精英家教网 > 初中数学 > 题目详情
(2008•呼和浩特)如图,已知梯形ABCD,AD∥BC,AD=DC=4,BC=8,点N在BC上,CN=2,E是AB中点,在AC上找一点M使EM+MN的值最小,此时其最小值一定等于( )

A.6
B.8
C.4
D.4
【答案】分析:此题关键是确定M的位置,将EM、MN转化到一条直线上,就可求出其和最小值.
解答:解:作N点关于AC的对称点N’,连接N’E交AC于M
∴∠DAC=∠ACB,∠DAC=∠DCA,
∴∠ACB=∠DCA,
∴点N关于AC对称点N′在CD上,CN=CN′=2,
又∵DC=4,
∴EN’为梯形的中位线,
∴EN′=(AD+BC)=6,
∴EM+MN最小值为:EN′=6.
故选A
点评:解决此题的关键是确定点M的位置.如果在直线的同侧有两个点,要在直线上找一点到两个点的距离之和最短,方法是找其中一个点关于直线的对称点,连接该点和另一个点,与直线的交点即为到两个点的距离之和最小的点的位置.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2008•呼和浩特)将图中的矩形ABCD沿对角线AC剪开,再把△ABC沿着AD方向平移,得到图2中的△A′B′C′,其中E是A′B′与AC的交点,F是A′C′与CD的交点.在图中除△ADC与△C′B′A′全等外,还有几对全等三角形(不添加辅助线和字母)请一一指出,并选择其中一对证明.

查看答案和解析>>

科目:初中数学 来源:2008年全国中考数学试题汇编《二次函数》(08)(解析版) 题型:解答题

(2008•呼和浩特)如图,已知二次函数图象的顶点坐标为C(1,1),直线y=kx+m的图象与该二次函数的图象交于A、B两点,其中A点坐标为(),B点在y轴上,直线与x轴的交点为F,P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于E点.
(1)求k,m的值及这个二次函数的解析式;
(2)设线段PE的长为h,点P的横坐标为x,求h与x之间的函数关系式,并写出自变量x的取值范围;
(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在点P,使得以点P、E、D为顶点的三角形与△BOF相似?若存在,请求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2008年全国中考数学试题汇编《反比例函数》(05)(解析版) 题型:解答题

(2008•呼和浩特)如图,正方形OABC的面积为4,点O为坐标原点,点B在函数y=(k<0,x<0)的图象上,点P(m,n)是函数y=(k<0,x<0)的图象上异于B的任意一点,过点P分别作x轴、y轴的垂线,垂足分别为E,F.
(1)设矩形OEPF的面积为S1,试判断S1是否与点P的位置有关;(不必说明理由)
(2)从矩形OEPF的面积中减去其与正方形OABC重合的面积,剩余面积记为S2,写出S2与m的函数关系,并标明m的取值范围.

查看答案和解析>>

科目:初中数学 来源:2008年内蒙古呼和浩特市中考数学试卷(解析版) 题型:解答题

(2008•呼和浩特)如图,已知二次函数图象的顶点坐标为C(1,1),直线y=kx+m的图象与该二次函数的图象交于A、B两点,其中A点坐标为(),B点在y轴上,直线与x轴的交点为F,P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于E点.
(1)求k,m的值及这个二次函数的解析式;
(2)设线段PE的长为h,点P的横坐标为x,求h与x之间的函数关系式,并写出自变量x的取值范围;
(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在点P,使得以点P、E、D为顶点的三角形与△BOF相似?若存在,请求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2008年内蒙古呼和浩特市中考数学试卷(解析版) 题型:解答题

(2008•呼和浩特)如图,正方形OABC的面积为4,点O为坐标原点,点B在函数y=(k<0,x<0)的图象上,点P(m,n)是函数y=(k<0,x<0)的图象上异于B的任意一点,过点P分别作x轴、y轴的垂线,垂足分别为E,F.
(1)设矩形OEPF的面积为S1,试判断S1是否与点P的位置有关;(不必说明理由)
(2)从矩形OEPF的面积中减去其与正方形OABC重合的面积,剩余面积记为S2,写出S2与m的函数关系,并标明m的取值范围.

查看答案和解析>>

同步练习册答案