精英家教网 > 初中数学 > 题目详情

如图,过点P(-4,3)作x轴,y轴的垂线,分别交x轴、y轴于A,B两点,交双曲线y=数学公式(k≥2)于E、F两点.
(1)点E的坐标是______,点F的坐标是______;(均用含k的式子表示)
(2)判断EF与AB的位置关系,并证明你的结论.

(1)解:∵点P(-4,3),
∴E点横坐标为-4,将x=-4代入y=得,y=-,故E(-4,-);
∴F点纵坐标为3,将y=3代入y=得,x=,故F(,3).
故答案为E(-4,-);F(,3).

(2)结论:EF∥AB.
证明:∵P(-4,3),

即得:
在Rt△PAB中,
在Rt△PEF中,
∴tan∠PAB=tan∠PEF,
∴∠PAB=∠PEF,
∴EF∥AB.
分析:(1)根据P点坐标可得到E点横坐标和F点纵坐标,代入函数解析式即可求出该两点的坐标;
(2)在Rt△PAB和Rt△PEF中,求出tan∠PAB和tan∠PEF,得到∠PAB=∠PEF,从而求出EF∥AB.
点评:本题考查了反比例函数综合问题,熟悉函数图象上点的坐标特征和平行线的判定和性质是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、如图,过点P画出射线PM,PN,使PM∥OA,PN∥OB,且射线PM和射线OA,射线PN和射线OB方向分别相同,量一量∠O和∠P,你能得到什么结论?如果射线PM和射线OA,射线PN和射线OB一组方向相同、另一组方向相反,∠O和∠P又有什么关系呢?如果两组方向都相反,∠O和∠P有什么关系?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在平面直角坐标系中,A(a,0),B(0,b),且a、b满足b=
a2-4
+
4-a2
+16
a+2

(1)求直线AB的解析式;
(2)若点M为直线y=mx在第一象限上一点,且△ABM是等腰直角三角形,求m的值.
(3)如图3过点A的直线y=kx-2k交y轴负半轴于点P,N点的横坐标为-1,过N点的直线y=
k
2
x-
k
2
交AP于点M,给出两个结论:①
PM+PN
NM
的值是不变;②
PM-PN
AM
的值是不变,只有一个结论是正确,请你判断出正确的结论,并加以证明和求出其值.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,过点O、A(1,0)、B(0,
3
)作⊙M,D为⊙M上不同于点O、A的一点,则∠ODA的度数为(  )
A、60°
B、60°或120°
C、30°
D、30°或150°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,过点P(2,
2
)作x轴的平行线交y轴于点A,交双曲线y=
k
x
(x>0)于点N,作PM⊥AN交双曲线y=
k
x
(x>0)于点M,连接AM.已知PN=4.
(1)求k的值;
(2)设直线MN解析式为y=ax+b,求不等式
k
x
≥ax+b的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,过点A(1,0)的直线与y轴平行,且分别与正比例函数y=k1x,y=k2x和反比例y=
k3x
在第一象限相交,则k1、k2、k3的大小关系是
k2>k3>k1
k2>k3>k1

查看答案和解析>>

同步练习册答案