精英家教网 > 初中数学 > 题目详情

如图,梯形ABCD中,AD∥BC,E为线段AB上的点,且满足AE=AD,BE=BC,过E作EF∥BC交CD于F,设P为线段CD上任意一点,试说明数学公式的理由.

证明:如图,
过D、F分别作DM∥AB交EF于M,FN∥AB交BC于N,
得平行四边形ADME和平行四边形BEFN.
所以FM=EF-AD,CN=BC-EF,DM=AE=AD,FN=BE=BC.
由△DMF∽△FNC,得,即
所以
又因为,即
所以当点P在线段CF上时,
=
同理,当点P在线段DF上时,.所以
分析:可过D、F分别作DM∥AB交EF于M,FN∥AB交BC于N,则可得平行四边形ADME和平行四边形BEFN以及△DMF∽△FNC,进而得出对应线段成比例,再通过线段之间的转化,即可得出结论.
点评:本题主要考查了梯形的性质以及相似三角形的判定及性质,能够利用其性质求解一些计算、证明问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知,如图,梯形ABCD中,AD∥BC,∠B=45°,∠C=120°,AB=8,则CD的长为(  )
A、
8
6
3
B、4
6
C、
8
2
3
D、4
2

查看答案和解析>>

科目:初中数学 来源: 题型:

5、已知:如图,梯形ABCD中,AD∥BC,AB=DC,AC、BD相交于点O,那么,图中全等三角形共有
3
对.

查看答案和解析>>

科目:初中数学 来源: 题型:

10、如图,梯形ABCD中,AD∥BC,BD为对角线,中位线EF交BD于O点,若FO-EO=3,则BC-AD等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,梯形ABCD中,已知AD∥BC,∠A=90°,AB=7,AD=2,cosC=
2
10

(1)求BC的长;
(2)试在边AB上确定点P的位置,使△PAD∽△PBC.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,梯形ABCD中,AD∥BC,BC=5,AD=3,对角线AC⊥BD,且∠DBC=30°,求梯形ABCD的高.

查看答案和解析>>

同步练习册答案