精英家教网 > 初中数学 > 题目详情
16.如图,一张三角形纸片ABC,∠C=90°,AC=8cm,BC=6cm.现将纸片折叠:使点A与点B重合,那么折痕长等于$\frac{15}{4}$cm.

分析 根据折叠得:GH是线段AB的垂直平分线,得出AG的长,再利用两角对应相等证△ACB∽△AGH,利用比例式可求GH的长,即折痕的长.

解答 解:如图,折痕为GH,
由勾股定理得:AB=$\sqrt{{6}^{2}+{8}^{2}}$=10cm,
由折叠得:AG=BG=$\frac{1}{2}$AB=$\frac{1}{2}$×10=5cm,GH⊥AB,
∴∠AGH=90°,
∵∠A=∠A,∠AGH=∠C=90°,
∴△ACB∽△AGH,
∴$\frac{AC}{AG}$=$\frac{BC}{GH}$,
∴$\frac{8}{5}$=$\frac{6}{GH}$,
∴GH=$\frac{15}{4}$cm.
故答案为:$\frac{15}{4}$.

点评 本题考查了折叠的性质和相似三角形的性质和判定,折叠是一种对称变换,它属于轴对称,本题的关键是明确折痕是所折线段的垂直平分线,利用三角形相似来解决.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

6.如图,已知OB=1,以OB为直角边作等腰直角三角形A1BO,再以OA1为直角边作等腰直角三角形A2A1O,如此下去,则线段OAn的长度为($\sqrt{2}$)n

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.数据-2,-1,0,1,2,4的中位数是(  )
A.0B.0.5C.1D.2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.2016年,我国又有1240万人告别贫困,为世界脱贫工作作出了卓越贡献.将1240万用科学记数法表示为a×10n的形式,则a的值为1.24.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图所示,顶点为($\frac{1}{2}$,-$\frac{9}{4}$)的抛物线y=ax2+bx+c过点M(2,0).
(1)求抛物线的解析式;
(2)点A是抛物线与x轴的交点(不与点M重合),点B是抛物线与y轴的交点,点C是直线y=x+1上一点(处于x轴下方),点D是反比例函数y=$\frac{k}{x}$(k>0)图象上一点,若以点A,B,C,D为顶点的四边形是菱形,求k的值.
 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知一次函数y=k1x+b与反比例函数y=$\frac{k_2}{x}$的图象交于第一象限内的P($\frac{1}{2}$,8),Q(4,m)两点,与x轴交于A点.
(1)分别求出这两个函数的表达式;
(2)写出点P关于原点的对称点P'的坐标;
(3)求∠P'AO的正弦值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是(  )
A.三棱柱B.四棱柱C.三棱锥D.四棱锥

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.三名初三学生坐在仅有的三个座位上,起身后重新就坐,恰好有两名同学没有坐回原座位的概率为(  )
A.)$\frac{1}{9}$B.)$\frac{1}{6}$C.)$\frac{1}{4}$D.)$\frac{1}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.定义:对于平面直角坐标系中的任意直线MN及点P,取直线MN上一点Q,线段PQ与直线MN成30°角的长度称为点P到直线MN的30°角的距离,记作d(P→MN).
已知O为坐标原点,A(4,0),B(3,3)是平面直角坐标系中两点.根据上述定义,解答下列问题:
(1)点A到直线OB的30°角的距离d(A→OB)=4$\sqrt{2}$;
(2)已知点G到线段OB的30°角的距离d(G→OB)=2,且点G的横坐标为1,则点G的纵坐标为1+$\sqrt{2}$或1-$\sqrt{2}$..
(3)若点A到直线l:y=kx+1的30°角的距离d(A→l)=4,求k的值.

查看答案和解析>>

同步练习册答案