精英家教网 > 初中数学 > 题目详情
已知:如图,等边三角形ABC中,D为AC边的中点,过C作CE∥AB,且AE⊥CE,那么∠CAE=∠ABD吗?请说明理由.
分析:根据△ABC为等边三角形,D为AC边上的中点得到AC=BA,∠BAC=∠BCA=60°,BD⊥AC,求出∠BDA=90°,由CE∥AB得∠ACE=∠BAD,利用90°-∠ACE=90°-∠BAD得出∠CAE=∠ABD.
解答:解:∠CAE=∠ABD,理由如下:
∵△ABC为等边三角形,D为AC边上的中点,
∴AC=BA,∠BAC=∠BCA=60°,BD⊥AC,
∴∠BDA=90°,
∵AE⊥CE,
∴∠AEC=∠BDA=90°,
又∵CE∥AB,
∴∠ACE=∠BAD,
∴90°-∠ACE=90°-∠BAD,
即∠CAE=∠ABD.
点评:本题主要考查等边三角形的性质的知识点,解答本题的关键是熟练掌握等边三角形边角之间的关系,此题难度不大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

学习《图形的相似》后,我们可以借助探索两个直角三角形全等的条件所获得经验,继续探索两个直角三角形相似的条件.
(1)“对与两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,两个直角三角形全等”.精英家教网类似地你可以得到:“满足
 
,或
 
,两个直角三角形相似”.
(2)“满足斜边和一条直角边对应相等的两个直角三角形全等”,类似地你可以得到“满足
 
的两个直角三角形相似”.
请结合下列所给图形,写出已知,并完成说理过程.
已知:如图,
 

试说明Rt△ABC∽Rt△A′B′C′.

查看答案和解析>>

科目:初中数学 来源: 题型:

学习《图形的相似》后,我们可以探索两个直角三角形全等的条件所获得的经验,继续探索两个直角三角形相似的条件.

(1)“对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,两个直角三角形全等”,类似地,你可以得到“满足_____,或_____,两个直角三角形相似”;
(2)“满足斜边和一条直角边对应相等的两个直角三角形全等”,类似地,你可以得到满足_____两个直角三角形相似”.请结合下列所给图形,写出已知,并完成说理过程.
已知:如图,_____.试说明Rt△ABC∽Rt△A/B/C/.

查看答案和解析>>

科目:初中数学 来源:2010年高级中等学校招生全国统一考试数学卷(江苏南京) 题型:解答题

学习《图形的相似》后,我们可以探索两个直角三角形全等的条件所获得的经验,继续探索两个直角三角形相似的条件.

(1)“对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,两个直角三角形全等”,类似地,你可以得到“满足_____,或_____,两个直角三角形相似”;
(2)“满足斜边和一条直角边对应相等的两个直角三角形全等”,类似地,你可以得到满足_____两个直角三角形相似”.请结合下列所给图形,写出已知,并完成说理过程.
已知:如图,_____.试说明Rt△ABC∽Rt△A/B/C/.

查看答案和解析>>

科目:初中数学 来源:2010-2011学年北京市考数学一模试卷 题型:选择题

已知:如图,在等边三角形ABC中,M、N分别是AB、AC的中点,D是MN上任意一点,CD、BD的延长线分别与AB、AC交于F、E,若 ,则等边三角

 

形ABC的边长为

 

A.         B.              C.               D.1

 

 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在等边三角形ABC中,M、N分别是AB、AC的中点,D是MN上任意一点,CD、BD的延长线分别与AB、AC交于F、E,若 ,则等边三角

 

形ABC的边长为

 

A.         B.              C.              D.1

 

 

查看答案和解析>>

同步练习册答案