精英家教网 > 初中数学 > 题目详情
在△ABC中.
(1)如图1,∠BAC和∠ACB的平分线交于点I,∠BAC=50°,∠ACB=70°,求∠AIC的度数;
(2)如图2,∠BAC外角平分线的反向延长线与∠ACB的角平分线交于点O,则∠O和∠B有什么数量关系?并说明你的理由.
分析:(1)首先根据角的平分线性质算出∠IAC和∠ICA的度数,再利用三角形内角和为180°,可求出∠AIC的度数;
(2)首先根据角的平分线性质可得∠ACO=
1
2
∠ACB,∠DAC=
1
2
∠EAC,再根据三角形内角与外角的关系可得∠O+∠ACO=∠DAC=
1
2
∠EAC,然后两边同时乘以2可得2∠O+∠ACB=∠EAC,
再由∠B+∠ACB=∠EAC即可得到∠B=2∠O.
解答:解:(1)∵AI平分∠BAC,
∴∠IAC=
1
2
∠BAC,
∵CI平分∠BCA,
∴∠ICA=
1
2
∠BCA,
∵∠BAC=50°,∠ACB=70°,
∴∠IAC=25°,∠ICA=35°,
∴∠AIC=180°-25°-35°=120°;

(2)数量关系:∠B=2∠O;
∵CO平分∠ACB,
∴∠ACO=
1
2
∠ACB,
∵AD平分∠EAC,
∴∠DAC=
1
2
∠EAC,
∵∠O+∠ACO=∠DAC=
1
2
∠EAC,
∴2∠O+∠ACB=∠EAC,
∵∠B+∠ACB=∠EAC,
∴∠B=2∠O.
点评:此题主要考查了角平分线的性质,三角形内角与外角的关系,三角形内角和定理,关键是根据角平分线的性质得到角之间的关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.
(1)CD与EF平行吗?为什么?
(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,∠C=90°,∠A=30°,以AB、AC为边向△ABC外作等边△ABD和等边△ACE.
精英家教网
(1)如图1.连接BE、CD,BE与CD交于点O,
①证明:DC=BE;
②∠BOC=
 
°. (直接填答案)
(2)如图2,连接DE,交AB于点F.DF与EF相等吗?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,在△ABC中,边AC的垂直平分线交BC于点D,交AC于点E、已知△ABC中与△ABD的周长分别为18cm和12cm,则线段AE的长等于
3
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,∠C=90°,BC=12,AB=13,则tanA的值是(  )
A、
5
12
B、
12
5
C、
12
13
D、
5
13

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,a=
2
,b=
6
,c=2
2
,则最大边上的中线长为(  )
A、
2
B、
3
C、2
D、以上都不对

查看答案和解析>>

同步练习册答案