精英家教网 > 初中数学 > 题目详情

【题目】已知等腰三角形三边中有两边的长分别为4、9,则这个等腰三角形的周长为(
A.13
B.17
C.22
D.17或22

【答案】C
【解析】解:当4为底时,其它两边都为9, ∵9、9、4可以构成三角形,
∴三角形的周长为22;
当4为腰时,其它两边为9和4,
∵4+4=8<9,
∴不能构成三角形,故舍去.
故选C.
【考点精析】解答此题的关键在于理解三角形三边关系的相关知识,掌握三角形两边之和大于第三边;三角形两边之差小于第三边;不符合定理的三条线段,不能组成三角形的三边,以及对等腰三角形的性质的理解,了解等腰三角形的两个底角相等(简称:等边对等角).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠A=90°,点DE分别在ACBC上,且CD·BCAC·CE,以E为圆心,DE长为半径作圆,⊙E经过点B,与ABBC分别交于点FG

(1)求证:AC是⊙E的切线;

(2)若AF=4,CG=5,

①求⊙E的半径;

②若Rt△ABC的内切圆圆心为I,则IE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对某一个函数给出如下定义:如果存在常数,对于任意的函数值,都满足,那么称这个函数是有上界函数;在所有满足条件的中,其最小值称为这个函数的上确界.例如,函数 ≤2,因此是有上界函数,其上确界是2.如果函数≤x≤ )的上确界是,且这个函数的最小值不超过2,则的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O直径,且弦CD⊥AB于点E,过点B作⊙O的切线与AD的延长线交于点F.

(1)若EN⊥BC于点N,延长NE与AD相交于点M.求证:AM=MD;

(2)若⊙O的半径为10,且cosC =,求切线BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】多项式15m3n2+5m2n﹣20m2n的公因式是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的

A.众数 B.方差 C.平均数 D.中位数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算x2x3 , 正确结果是(
A.x6
B.x5
C.x9
D.x8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点E(x0y0)F(x2y2),点M(x1y1)是线段EF的中点,则 .在平面直角坐标系中有三个点A(1,-1)B(1,-1)C(01),点P(02)关于A的对称点为P1(PAP1三点共线,且PAP1A)P1关于B的对称点为P2P2关于C的对称点为P3,按此规律继续以ABC为对称点重复前面的操作,依次得到P4P5P6…,则点P2015的坐标是(  )

A. (00) B. (02)

C. (2,-4) D. (42)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】⊙O的半径为6cm,点A到圆心O的距离为5cm,那么点A与⊙O的位置关系是( )
A.点A在圆内
B.点A在圆上
C.点A在圆外
D.不能确定

查看答案和解析>>

同步练习册答案