分析 (1)待定系数法求解可得;
(2)根据:销售总利润=单件利润×销售量,得出函数关系式,根据二次函数的性质可得其最值;
(3)根据题意列出不等式求解可得.
解答 解:(1)由题意得:$\left\{\begin{array}{l}{70k+b=50}\\{80k+b=40}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{k=-1}\\{b=120}\end{array}\right.$.
∴一次函数的解析式为:y=-x+120;
(2)w=(x-60)(-x+120)=-x2+180x-7200=-(x-90)2+900,
∵抛物线开口向下,
∴当x<90时,w随x的增大而增大,
而60≤x≤84,
∴当x=84时,w=(84-60)×(120-84)=864.
答:当销售价定为84元/件时,商场可以获得最大利润,最大利润是864元.
(3)根据题意可得-(x-90)2+900≥500,
解得:70≤x≤110
答:销售价格x的取值范围为70≤x≤110.
点评 本题主要考查二次函数的实际应用,理解题意得出函数解析式并熟练掌握二次函数的性质是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | a-(b+c)=a-b+c | B. | a+b-c=a+(b-c) | C. | a+(b+c)=a-b+c | D. | a+b-c=a-(b+c) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com