¸ù¾Ý¶àÏîʽµÄ³Ë·¨ÓëÒòʽ·Ö½âµÄ¹ØÏµ£¬¿ÉµÃx2-x-6=£¨x+2£©£¨x-3£©£¬ÓұߵÄÁ½¸öÒ»´ÎÁ½ÏîʽµÄϵÊýÓйØÏµ11×-32£¬×ó±ßÉÏ¡¢Ï½ÇÁ½Êý»ýÊÇԭʽ×ó±ß¶þ´ÎÏîµÄϵÊý£¬ÓÒ±ßÁ½Êý»ýÊÇԭʽ×ó±ß³£ÊýÏ½»²æÏà³Ë»ýÖ®ºÍÊÇԭʽ×ó±ßÒ»´ÎÏîµÄϵÊý£®ÕâÖÖ·Ö½â¶þ´ÎÈýÏîʽµÄ·½·¨½Ð¡°Ê®×ÖÏà³Ë·¨¡±£®ÇëͬѧÃÇÈÏÕæ¹Û²ì£¬·ÖÎöÀí½âºó£¬½â´ðÏÂÁÐÎÊÌ⣮
£¨1£©Ìî¿Õ£º
¢Ù·Ö½âÒòÊý£º6x2-x-2=______£®
¢Ú½â·½³Ì£º3x2+x-2=0£¬×ó±ß·Ö½âÒòʽµÃ£¨______£©£¨______£©=0£¬¡àx1=______£¬x2=______£®
£¨2£©½â·½³Ì£®

¡¾´ð°¸¡¿·ÖÎö£º£¨1£©¢ÙÀûÓÃÊ®×ÖÏà³Ë·¨£¬½«6·Ö½âΪ2¡¢3£¬½«-2·Ö½âΪ1¡¢-2£¬Ôò6x2-x-2=£¨2x+1£©£¨3x-2£©£®
¢ÚÀûÓÃÊ®×ÖÏà³Ë·¨£¬½«¶þ´ÎÏîϵÊý3·Ö½âΪ1¡¢3£¬½«³£ÊýÏî·Ö½âΪ1¡¢-2£¬Ôò3x2+x-2=£¨x+1£©£¨3x-2£©£®
½â´ð£º½â£º£¨1£©¢Ù¡¢6x2-x-2=£¨2x+1£©£¨3x-2£©£®
¢Ú¡¢3x2+x-2=0£¬
×ó±ß·Ö½âÒòʽµÃ£¨x+1£©£¨3x-2£©=0£¬
½âµÃ£ºx1=-1£¬x2=£»

£¨2£©½â·½³ÌÁ½±ß¶¼³ËÒÔ£¨x2-3£©£¬
µÃx2£¨x2-3£©+2=0£¬
»¯¼òµÃx4-3x2+2=0
Éèy=x2£¬ÔòÔ­·½³ÌΪy2-3y+2=0£¬
½âÕâ¸ö·½³ÌµÃy1=1£¬y2=2£¬
¼´x2=1»òx2=2£¬
½âÕâÁ½¸ö·½³ÌµÃ£¬
¾­¼ìÑ飬¾ùΪԭ·½³ÌµÄ¸ù£®
µãÆÀ£º±¾Ì⿼²éÁËÀûÓÃÊ®×ÖÏà³Ë·¨½øÐÐÒòʽ·Ö½âºÍ½â·Öʽ·½³Ì£¬Ê®×ÖÏà³Ë·¨ÔÚÒòʽ·Ö½âºÍ½â·½³ÌÖÐÓÐ׏㷺µÄÓ¦Óã¬ÔËÓÃÊ®×ÖÏà³Ë·¨·Ö½âÒòʽʱ£¬Òª×¢Òâ¹Û²ì£¬³¢ÊÔ£¬²¢Ìå»áËüʵÖÊÊǶþÏîʽ³Ë·¨µÄÄæ¹ý³Ì£®ÔÚ½â·Öʽ·½³Ìʱ£¬µ±´ÎÊý½Ï¸ßʱ£¬¿ÉÓ¦Óû»Ôª·¨£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍø¸ù¾Ý¶àÏîʽµÄ³Ë·¨ÓëÒòʽ·Ö½âµÄ¹ØÏµ£¬¿ÉµÃx2-x-6=£¨x+2£©£¨x-3£©£¬ÓұߵÄÁ½¸öÒ»´ÎÁ½ÏîʽµÄϵÊýÓйØÏµ11¡Á-32£¬×ó±ßÉÏ¡¢Ï½ÇÁ½Êý»ýÊÇԭʽ×ó±ß¶þ´ÎÏîµÄϵÊý£¬ÓÒ±ßÁ½Êý»ýÊÇԭʽ×ó±ß³£ÊýÏ½»²æÏà³Ë»ýÖ®ºÍÊÇԭʽ×ó±ßÒ»´ÎÏîµÄϵÊý£®ÕâÖÖ·Ö½â¶þ´ÎÈýÏîʽµÄ·½·¨½Ð¡°Ê®×ÖÏà³Ë·¨¡±£®ÇëͬѧÃÇÈÏÕæ¹Û²ì£¬·ÖÎöÀí½âºó£¬½â´ðÏÂÁÐÎÊÌ⣮
£¨1£©Ìî¿Õ£º
¢Ù·Ö½âÒòÊý£º6x2-x-2=
 
£®
¢Ú½â·½³Ì£º3x2+x-2=0£¬×ó±ß·Ö½âÒòʽµÃ£¨
 
£©£¨
 
£©=0£¬¡àx1=
 
£¬x2=
 
£®
£¨2£©½â·½³Ìx2+
2x2-3
=0
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2015½ì½­ËÕÊ¡ÑγÇÊÐÆßÄê¼¶ÏÂѧÆÚÆÚÖп¼ÊÔÊýѧÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

ÀûÓÃͼÐÎÀ´±íʾÊýÁ¿»òÊýÁ¿¹ØÏµ£¬Ò²¿ÉÒÔÀûÓÃÊýÁ¿»òÊýÁ¿¹ØÏµÀ´ÃèÊöͼÐÎÌØÕ÷»òͼÐÎÖ®¼äµÄ¹ØÏµ£¬ÕâÖÖ˼Ïë·½·¨³ÆÎªÊýÐνáºÏ£®ÎÒÃǸÕѧ¹ýµÄµÚ9Õ¡¶Õûʽ³Ë·¨ÓëÒòʽ·Ö½â¡·¾ÍºÜºÃµØÌåÏÖÁËÕâһ˼Ïë·½·¨£¬ÄãÄÜÀûÓÃÊýÐνáºÏµÄ˼Ïë½â¾öÏÂÁÐÎÊÌâÂð£¿

£¨1£©Èçͼ£¬Ò»¸ö±ß³¤Îª1µÄÕý·½ÐΣ¬ÒÀ´ÎÈ¡Õý·½ÐÎÃæ»ýµÄ¡¢¡¢£¬¸ù¾ÝͼʾÎÒÃÇ¿ÉÒÔÖªµÀ£º          £®

ÀûÓÃÉÏÊö¹«Ê½¼ÆË㣺          £®

£¨2£©¼ÆË㣺          £»

£¨3£©¼ÆË㣺         £®

 

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

¸ù¾Ý¶àÏîʽµÄ³Ë·¨ÓëÒòʽ·Ö½âµÄ¹ØÏµ£¬¿ÉµÃx2-x-6=£¨x+2£©£¨x-3£©£¬ÓұߵÄÁ½¸öÒ»´ÎÁ½ÏîʽµÄϵÊýÓйØÏµ11¡Á-32£¬×ó±ßÉÏ¡¢Ï½ÇÁ½Êý»ýÊÇԭʽ×ó±ß¶þ´ÎÏîµÄϵÊý£¬ÓÒ±ßÁ½Êý»ýÊÇԭʽ×ó±ß³£ÊýÏ½»²æÏà³Ë»ýÖ®ºÍÊÇԭʽ×ó±ßÒ»´ÎÏîµÄϵÊý£®ÕâÖÖ·Ö½â¶þ´ÎÈýÏîʽµÄ·½·¨½Ð¡°Ê®×ÖÏà³Ë·¨¡±£®ÇëͬѧÃÇÈÏÕæ¹Û²ì£¬·ÖÎöÀí½âºó£¬½â´ðÏÂÁÐÎÊÌ⣮
£¨1£©Ìî¿Õ£º
¢Ù·Ö½âÒòÊý£º6x2-x-2=______£®
¢Ú½â·½³Ì£º3x2+x-2=0£¬×ó±ß·Ö½âÒòʽµÃ£¨______£©£¨______£©=0£¬¡àx1=______£¬x2=______£®
£¨2£©½â·½³ÌÊýѧ¹«Ê½£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£ºÍ¬²½Ìâ ÌâÐÍ£º½â´ðÌâ

ÓɶàÏîʽµÄ³Ë·¨·¨ÔòÖª£ºÈô£¨x+a£©£¨x+b£©=x2+x+q£¬Ôòp=a+b£¬q=a¡¤b£»·´¹ýÀ´x2+x+q=£¨x+a£©£¨x+b£©Òª½«¶àÏîʽx2+x+q½øÐзֽ⣬¹Ø¼üÊÇÕÒµ½Á½¸öÊýa¡¢b£¬Ê¹a+b=p£¬a¡¤b=q£¬Èç¶Ô¶àÏîʽx2-3x+2£¬ÓÐp=-3£¬q=2£¬a=-1£¬b=-2¡£´Ëʱ£¨-1£©+£¨-2£©=-3£¬£¨-1£©£¨-2£©=2£¬ËùÒÔx2-3x+2¿É·Ö½âΪ£¨x-1£©£¨x-2£©¼´x2-3x-2=£¨x-1£©£¨x-2£©¡£
£¨1£©¸ù¾ÝÒÔÉÏÌîдÏÂ±í£º
¶àÏîʽ
p
q
a
b
·Ö½â½á¹û
x2+9x+20
 
 
 
 
 
x2-9x+20
 
 
 
 
 
x2+x-20
 
 
 
 
 
x2-x-20
 
 
 
 
£¨2£©¸ù¾ÝÌî±í£¬»¹¿ÉµÃ³öÈçϽáÂÛ£º
µ±qÊÇÕýÊýʱ£¬Ó¦·Ö½â³ÉÁ½¸öÒòÊýa¡¢b_______________ºÅ£¬a¡¢bµÄ·ûºÅÓë__________Ïàͬ£»
µ±qÊǸºÊýʱ£¬Ó¦·Ö½â³ÉµÄÁ½¸öÒòÊýa¡¢b______________ºÅ£¬a¡¢bÖоø¶ÔÖµ½Ï´óµÄÒòÊýµÄ·ûºÅÓë_______Ïàͬ¡£
£¨3£©·Ö½âÒòʽ£º
x2-x-12=_____________£»x2-7x+6=________________¡£

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸