精英家教网 > 初中数学 > 题目详情
已知:在四边形ABCD中,AB=1,E、F、G、H分别时AB、BC、CD、DA上的点,且AE=BF=CG=DH.设四边形EFGH的面积为S,AE=x(0≤x≤1).
(1)如图①,当四边形ABCD为正方形时,
①求S关于x的函数解析式,并求S的最小值S0
②在图②中画出①中函数的草图,并估计S=0.6时x的近似值(精确到0.01);
(2)如图③,当四边形ABCD为菱形,且∠A=30°时,四边形EFGH的面积是否存在最小值?若存在,求出最小值;若不存在,请说明理由.
(1)①在Rt△AEH中,AE=x,AH=1-x,
则S=HE2=x2+(1-x)2
=2x2-2x+1=2(x-
1
2
2+
1
2

∴当x=
1
2
时,S0=
1
2

②列表:
x00.30.50.71
S0.580.50.580
在直角坐标系中描点、画图(图2中粗线).
(注:作图时,不列对应值表不扣分)
观察函数的图象,可知当S=0.6时,x≈0.27和x≈0.73.
验证:当x=0.27时,S=0.6029;当x=0.28时,S=0.5984.
从而取x≈0.28.同理取x≈0.72.

(2)四边形EFGH的面积存在最小值.
理由如下:
由条件,易证△AEH≌△CGF,△EBF≌△GDH
作HM⊥AE于M,作FN⊥EB且FN交EB的延长线于N
∵AE=x,则AH=1-x
又在Rt△AMH中,∠HAM=30°
∴HM=
1
2
AH=
1
2
(1-x)
同理得FN=
1
2
BF=
1
2
x
∴S△AEH=
1
2
AE•HM=
1
4
x(1-x),S△EBF=
1
2
EB•FN=
1
4
x(1-x)
又∵SABCD=
1
2

∴S=
1
2
-4×
1
4
x(1-x)=x2-x+
1
2
=(x-
1
2
2+
1
4

∴当x=
1
2
时,四边形EFGH的面积存在最小值
1
4

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线的顶点坐标是(2,-1),且经过点A(5,8)
(1)求该抛物线的解析式;
(2)设该抛物线与y轴相交于点B,与x轴相交于C、D两点(点C在点D的左边),试求点B、C、D的坐标;
(3)设点P是x轴任一点,连接AP、BP.试求当AP+BP取得最小值时点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,一小孩将一只皮球从A处抛出去,它所经过的路线是某个二次函数图象的一部分,如果他的出手处A距地面的距离OA为1m,球路的最高点B(8,9),则这个二次函数的表达式为______,小孩将球抛出了约______米(精确到0.1m).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知⊙P的圆心坐标为(1.5,0),半径为2.5,⊙P与x轴交于A、B两点(点A在点B的左侧),与y轴的负半轴交于点D.
(1)求D点的坐标;
(2)求过A、B、D三点的抛物线的解析式;
(3)设平行于x轴的直线交此抛物线于E、F两点,问:是否存在以线段EF为直径的圆O'恰好与⊙P相外切?若存在,求出其半径r及圆心O'的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,AB=AC=5,以AB为直径的⊙P交BC于H.点A,B在x轴上,点H在y轴上,B点的坐标为(1,0).
(1)求点A,H,C的坐标;
(2)过H点作AC的垂线交AC于E,交x轴于F,求证:EF是⊙P的切线;
(3)求经过A,O两点且顶点到x轴的距离等于4的抛物线解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=-
1
8
x2+bx+c交x轴于A、B两点,交y轴于点C,且抛物线的对称轴为直线x=1,设∠ABC=α,且cosα=
4
5

(1)求这条抛物线的函数关系式;
(2)动点P从点A出发,沿A→B→C方向,向点C运动;动点Q从点B出发,沿射线BC方向运动.若P、Q两点同时出发,运动速度均为1个单位长度/秒,当点P到达点C时,整个运动随之结束,设运动时间为t秒.
①试求△APQ的面积S与t之间的函数关系式,并指出自变量t的取值范围;
②在运动过程中,是否存在这样的t的值,使得△APQ是以AP为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图1,抛物线y=-
1
4
x2+
1
4
x+3
与直线y=-
1
4
x-
3
4
交于A、B两点.如图2,质地均匀的正四面体骰子的各个面上依次标有数字-1、1、3、4.随机抛掷这枚骰子两次,把第一次着地一面的数字m记做P点的横坐标,第二次着地一面的数字n记做P点的纵坐标,则点P(m,n)落在如图1中的抛物线与直线围成区域内(图中阴影部分,含边界)的概率是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

用铝合金型材做一个形状如图1所示的矩形窗框,设窗框的一边为xm.窗户的适光面积为ym2,y与x的函数图象如图2所示.
(1)当窗户透光面积最大时,求窗框的两边长;
(2)要使窗户透光面积不小于1m2.则窗框的一边长x应该在什么范围内取值?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的关系为y=ax2+bx+c(a≠0)、若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是(  )
A.第8秒B.第10秒C.第12秒D.第15秒

查看答案和解析>>

同步练习册答案