精英家教网 > 初中数学 > 题目详情
精英家教网我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A,B,C,D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,-3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2,则经过点C的“蛋圆”切线EC的解析式是
 
分析:根据题意,先求得C点坐标,然后根据三角形性质求出E点坐标,用待定系数法求出直线EC的解析式.
解答:精英家教网解:连接CM
在Rt△MOC中,∵OM=1,CM=2,
∴∠CMO=60°,OC=
3
,即C的坐标为(0,
3
);
在Rt△MCE中,∵MC=2,∠CMO=60°,
∴ME=4,即E的坐标分别为(-3,0).
故设EC的解析式为y=kx+
3
,把E点坐标代入得:k=
3
3

故EC的解析式是y=
3
3
x+
3
点评:本题考查学生数形结合处理问题、解决问题的能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A、B、C、D分别是“蛋圆”与坐标轴的交点,点D的坐标为(0,-3)AB为半圆直径,半圆圆心M(1,0),半径为2,则“蛋圆”的抛物线部分的解析式为
 
.经过点C的“蛋圆”的切线的解析式为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图所示,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,-3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.
(1)请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;
(2)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;
(3)开动脑筋想一想,相信你能求出经过点D的“蛋圆”切线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,-3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.
(1)请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;
(2)开动脑筋想一想,相信你能求出经过点D的“蛋圆”切线的解析式.
(3)如果直线x=m在线段OB上移动,交x轴于点D,交抛物线于点E,交BD于点F.连接DE和BE后,对于问题“是否存在这样的点E,使△BDE的面积最大?”小明同学认为:“当E为抛物线的顶点时,△BDE的面积最大.”他的观点是否精英家教网正确?提出你的见解,若△BDE的面积存在最大值,请求出m的值以及点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

仔细阅读并完成下题:
我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”;如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,已知“蛋圆”是由抛物线y=ax2-2ax+c的一部分和圆心为M的半圆合成的.点A、B、C分别是“蛋圆”与坐标轴的交点,已知点A的坐标为(-1,0),AB为半圆的直径,
(1)点B的坐标为(
3
3
0
0
);点C的坐标为(
0
0
3
3
),半圆M的半径为
2
2

(2)若P是“蛋圆”上的一点,且以O、P、B为顶点的三角形是等腰直角三角形求符合条件的点P的坐标,以及所对应的a的值;
(3)已知直线y=x-
7
2
是“蛋圆”的切线,求满足条件的抛物线解析式.

查看答案和解析>>

同步练习册答案