精英家教网 > 初中数学 > 题目详情

【题目】如图,在矩形ABCD中,AB3AD5,点EDC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,求cosEFC的值.

【答案】

【解析】

先根据矩形的性质得ADBC5ABCD3,再根据折叠的性质得AFAD5EFDE,在RtABF中,利用勾股定理计算出BF4,则CFBCBF1,设CEx,则DEEF3x,然后在RtECF中根据勾股定理得到x2+12=(3x2,解方程得到x的值,进一步得到EF的长,再根据余弦函数的定义即可求解.

∵四边形ABCD为矩形,

ADBC5ABCD3

∵矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,

AFAD5EFDE

RtABF中,∵BF4

CFBCBF541

CEx,则DEEF3x

RtECF中,∵CE2+FC2EF2

x2+12=(3x2,解得x

EF3x

cosEFC

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C90°,点P是边AC上一点,过点PPQABBC于点QD为线段PQ的中点,BD平分∠ABC,以下四个结论①△BQD是等腰三角形;②BQDP;③PAQP;④=(1+2;其中正确的结论的个数(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在直角坐标平面内,直线分别与轴、轴交于点.抛物线经过点与点,且与轴的另一个交点为.在该抛物线上,且位于直线的上方.

1)求上述抛物线的表达式;

2)联结,且于点,如果的面积与的面积之比为,求的余切值;

3)过点,垂足为点,联结.相似,求点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“三等分角”是数学史上一个著名的问题,但仅用尺规不可能“三等分角”.下面是数学家帕普斯借助函数给出的一种“三等分锐角”的方法(如图):将给定的锐角∠AOB置于直角坐标系中,边OBx轴上、边OA与函数的图象交于点P,以P为圆心、以2OP为半径作弧交图象于点R.分别过点PRx轴和y轴的平行线,两直线相交于点M,连接OM得到∠MOB,则∠MOB=∠AOB.要明白帕普斯的方法,请研究以下问题:

(1)P()、R(),求直线OM对应的函数表达式(用含的代数式表示);

(2)分别过点PRy轴和x轴的平行线,两直线相交于点Q.请说明Q点在直线OM上,并据此证明∠MOB=∠AOB;

(3)应用上述方法得到的结论,你如何三等分一个钝角(用文字简要说明)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列函数中,y关于x的二次函数是( )

A. yax2+bx+c B. yx(x1)

C. y= D. y(x1)2x2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线Myax2+bx+ca≠0)经过A(﹣1,0),且顶点坐标为B(0,1).

(1)求抛物线M的函数表达式;

(2)设Ft,0)为x轴正半轴上一点,将抛物线M绕点F旋转180°得到抛物线M1

抛物线M1的顶点B1的坐标为   

当抛物线M1与线段AB有公共点时,结合函数的图象,求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,边长为2的正方形ABCD,点P从点A出发以每秒1个单位长度的速度沿ADC的路径向点C运动,同时点Q从点B出发以每秒2个单位长度的速度沿BCDA的路径向点A运动,当Q到达终点时,P停止移动,设△PQC的面积为S,运动时间为t秒,则能大致反映St的函数关系的图象是(  )

A.B.

C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形ABCD中,PCD边上一点(DPCP),∠APB90°.将△ADP沿AP翻折得到△AD'PPD'的延长线交边AB于点M,过点BBNMPDC于点N,连接AC,分别交PMPB于点EF.现有以下结论:

连接DD',则AP垂直平分DD'

四边形PMBN是菱形;

AD2DPPC

AD2DP,则

其中正确的结论是_____(填写所有正确结论的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数的部分图象如图所示,其中图象与轴交于点,与轴交于点,且经过点

求此二次函数的解析式;

将此二次函数的解析式写成的形式,并直接写出顶点坐标以及它与轴的另一个交点的坐标.

利用以上信息解答下列问题:若关于的一元二次方程为实数)在的范围内有解,则的取值范围是________.

查看答案和解析>>

同步练习册答案