精英家教网 > 初中数学 > 题目详情
(1)观察下列等式:
1
(1+1×2)(1+2×2)
=
1
2
(
1
1+1×2
-
1
1+2×2
)

1
(1+2×2)(1+3×2)
=
1
2
(
1
1+2×2
-
1
1+3×2
)

1
(1+3×2)(1+4×2)
=
1
2
(
1
1+3×2
-
1
1+4×2
)

根据等式的规律填空:
1
[1+2(n-1)](1+2n)
=
 

(2)利用(1)的结论先化简代数式:
1
(1+x)(1+2x)
+
1
(1+2x)(1+3x)
+
1
(1+3x)(1+4x)
+
1
(1+4x)(1+5x)
+
1
(1+5x)(1+6x)
+
1
(1+6x)(1+7x)

再求当x=
-4+
30
7
的值.
分析:(1)根据等式规律进行解答;
(2)注意运用(1)的结论,先化简,再代入求值.
解答:解:(1)
1
2
[
1
1+2(n-1)
-
1
1+2n
]

(2)原式=
1
x
[
1
1+x
-
1
1+2x
+
1
1+2x
-
1
1+3x
+…-
1
1+7x
]
=
1
x
1
1+x
-
1
1+7x

=
6
(1+x)(1+7x)

x=
-4+
30
7
时,
原式=
6
3+
30
7
×(-3+
30
)
=2.
点评:分式的四则运算是整式四则运算的进一步发展,是有理式恒等变形的重要内容之一.
在计算时,首先要弄清楚运算顺序,先去括号,再进行分式的乘除.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

观察下列等式:
1
1×2
=1-
1
2

1
2×3
=
1
2
-
1
3

1
3×4
=
1
3
-
1
4

1
n(n+1)
=
1
n
-
1
n+1

将以上等式相加得到
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
=1-
1
n+1

用上述方法计算:
1
1×3
+
1
3×5
+
1
5×7
+…+
1
99×101
其结果为(  )
A、
50
101
B、
49
101
C、
100
101
D、
99
101

查看答案和解析>>

科目:初中数学 来源: 题型:

2、观察下列等式:2=2=1×2;2+4=6=2×3;2+4+6=12=3×4;2+4+6+8=20=4×5;…
(1)可以猜想,从2开始到第n(n为自然数)个连续偶数的和是
n(n+1)

(2)当n=10时,从2开始到第10个连续偶数的和是
110

查看答案和解析>>

科目:初中数学 来源: 题型:

观察下列等式:
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
,…用自然数n将上面式子的一般规律表示为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

观察下列等式,找出规律然后空格处填上具体的数字.1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,1+3+5+7+9+11=
 

(1)第5个式子等号右边应填的数是
 

(2)根据规律填空1+3+5+7+9+…+99=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

观察下列等式:
1=12
1+3=22
1+3+5=32
1+3+5+7=42

则1+3+5+…+15=
8
8
2
并请你将想到的规律用含有n(n是正整数)的等式来表示就是:
1+3+5+7+…+(2n-1)=n2
1+3+5+7+…+(2n-1)=n2

查看答案和解析>>

同步练习册答案