精英家教网 > 初中数学 > 题目详情
如图,∠MON=90°,边长为2的等边三角形ABC在∠MON内部,但两顶点A、B分别在边OM、ON上滑动,点D是AB边中点
(1)求CD的长度;
(2)探究:△ABC在滑动的过程中,点C与点O之间的最大距离是多少.
分析:(1)如图连接CD.根据等边三角形“三合一”、三个内角都是60°的性质,结合勾股定理即可求得CD的长度;
(2)根据三角形的边角关系得到OC小于等于OD+DC,只有当O、D及C共线时,OC取得最大值,最大值为OD+CD,由等边三角形的边长为2,根据D为AB中点,得到BD为1,根据三线合一得到CD垂直于AB,在直角三角形BCD中,根据勾股定理求出CD的长,在直角三角形AOB中,OD为斜边AB上的中线,根据直角三角形斜边上的中线等于斜边的一半可得OD等于AB的一半,由AB的长求出OD的长,进而求出DC+OD,即为OC的最大值.
解答:解:(1)如图,连接CD.
∵△ABC是等边三角形,且边长是2,∴BC=AB=1,
∵点D是AB边中点,
∴BD=
1
2
AB=1,
∴CD=
BC2-BD2
=
22-12
=
3
,即CD=
3


(2)连接OD,OC,有OC≤OD+DC,
当O、D、C共线时,OC有最大值,最大值是OD+CD,
由(1)得,CD=
3

又∵△AOB为直角三角形,D为斜边AB的中点,
∴OD=
1
2
=1,
∴OD+CD=1+
3
,即OC的最大值为1+
3
点评:此题考查了等边三角形的性质,直角三角形斜边上的中线等于斜边的一半,以及勾股定理,其中找出OC最大时的长为CD+OD是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,∠MON=90°,AP平分∠MAB,BP平分∠ABN.
(1)求∠P的度数;
(2)若∠MON=80°,其余条件不变,求∠P的度数;
(3)经过(1)、(2)的计算,猜想并证明∠MON与∠P的关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,∠MON=90°,点A、B分别在射线OM、ON上移动,BD是∠NBA的平分线,BD的反向延长线与∠BAO的平分线相交于点C.试猜想:∠ACB的大小是否随A、B的移动发生变化?如果保持不变,请给出证明;如果随点A、B的移动发生变化,请给出变化范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为
2
+1
2
+1

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,∠MON=90°,△ABC的顶点A、B分别在OM、ON上,当A点从O点出发沿着OM向右运动时,同时点B在ON上运动,连结OC.若AC=4,BC=3,AB=5,则OC的长度的最大值是
5
5

查看答案和解析>>

同步练习册答案