精英家教网 > 初中数学 > 题目详情
11.如图,将一个长为12cm,宽为6cm的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为(  )
A.9cm2B.18cm2C.27cm2D.72cm2

分析 首先根据折叠方法求出菱形的对角线长,再根据菱形的面积公式可得答案.

解答 解:根据折叠可得:剪下的菱形对角线长分别为:12÷2=6cm,6÷2=3cm,
得到的菱形的面积为:6×3÷2=9(cm2),
故选:A.

点评 此题主要考查了剪纸问题,以及菱形的性质,关键是掌握菱形的面积公式.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

1.已知a,b,c是△ABC的三边长,且满足关系式a3+ab2-ac2+a2b+b3-bc2=0,则△ABC的形状为直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.(1)${(-\sqrt{6})}^{2}$-$\sqrt{25}$+$\sqrt{{(-3)}^{2}}$
(2)(x-2)2-9=0.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.一个不透明的盒子中装有10个黑球和若干个白球,它们除颜色不同外,其余均相同.从盒子中随机摸出一球记下其颜色,再把它放回盒子中摇匀,重复上述过程,共试验400次,其中有240次摸到白球.由此估计盒子中的白球大约有(  )
A.10个B.15个C.18个D.30个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,在边长为4的正方形ABCD中,点P在AB上从A向B运动,连结DP交AC于点Q.
(1)试证明:无论点P运动到AB上何处时,都有△ADQ≌△ABQ;
(2)当△ABQ的面积是正方形ABCD面积的$\frac{1}{6}$时,求DQ的长;
(3)若点P从点A运动到点B,再继续在BC上运动到点C,在整个运动过程中,当点P运动到什么位置时,△ADQ恰为等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.如图,15个形状大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角为60°,A、B、C都在格点上,点D在过A、B、C三点的圆弧上,若E也在格点上,且∠AED=∠ACD,则cos∠AEC=$\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.若(a+1)x|a|+3y=1是关于x、y的二元一次方程,则a=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图1,在△ABC中,AB=AC=2,∠A=90°,将一块与△ABC全等的三角板的直角顶点放在点C上,一直角边与BC重叠.
(1)操作1:固定△ABC,将三角板沿C→B方向平移,使其直角顶点落在BC的中点M,如图2所示,探究:三角板沿C→B方向平移的距离为$\sqrt{2}$;
(2)操作2:在(1)的情况下,将三角板BC的中点M顺时针方向旋转角度a(0°<a<90°),如图3所示,探究:设三角形板两直角边分别与AB、AC交于点P、Q,观察四边形MPAQ形状的变化,问:四边形MPAQ的面积S是否改变,若不变,求其面积;若改变,试说明理由;
(3)在(2)的情形下,连PQ,则当△MPQ的面积等于四边形MPAQ的面积的一半时,四边形MPAQ的形状为正方形,此时BP=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.(1)如图,已知△ABC,试画出AB边上的中线和AC边上的高;
(2)有没有这样的多边形,它的内角和是它的外角和的3倍?如果有,请求出它的边数.

查看答案和解析>>

同步练习册答案