精英家教网 > 初中数学 > 题目详情

如图,四边形ABCD是边长为9的正方形纸片,B′为CD边上的点,B′C=3.将纸片沿某条直线折叠,使点B落在点B′处,点A的对应点为A′,折痕分别与AD,BC边交于点M,N.
(1)求BN的长;
(2)求四边形ABNM的面积.

解:如图.
(1)由题意,点A与点A′,
点B与点B′分别关于直线MN对称,
∴AM=A′M,BN=B′N.
设BN=B′N=x,则CN=9-x.
∵正方形ABCD,
∴∠C=90°.
∴CN2+B′C2=B′N2
∵B′C=3,
∴(9-x)2+32=x2
解得x=5.
∴BN=5.

(2)解:∵正方形ABCD,
∴AD∥BC,∠A=90°.
∵点M,N分别在AD,BC边上,
∴四边形ABNM是直角梯形.
∵BN=B′N=5,BC=9,
∴NC=4.

∵∠1+∠2=90°,∠2+∠3=90°,
∴∠3=∠1.
∴sin∠3=sin∠1=
在Rt△DB′P中,∵∠D=90°,
DB′=DC-B′C=6,
∴PB′=
∵A′B′=AB=9,
∴A′P=A′B′-PB′=
∵∠4=∠3,
∴tan∠4=tan∠3=
在Rt△A′MP中,∵∠A′=∠A=90°,
A′P=,tan∠4==
∴A'M=2.
∴S梯形ABNM=(AM+BN)×AB=(2+5)×9=
分析:(1)根据折叠的性质得出AM=A′M,BN=B′N,BN=B′N=x,则CN=9-x,再利用勾股定理求出即可;
(2)首先求出NC的长,即可得出BN,利用角相等三角函数值就相等,即可求出AM,即可得出答案.
点评:此题主要考查了折叠问题与解直角三角形以及正方形的知识,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,以及解直角三角形时相等的角三角函数值相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC与BD互相垂直平分于点O,设AC=2a,BD=2b,请推导这个四边形的性质.(至少3条)
(提示:平面图形的性质通常从它的边、内角、对角线、周长、面积等入手.)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC、BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+CF.
(1)求证:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,四边形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD为正方形,E是BC的延长线上的一点,且AC=CE,求∠DAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.

(I)求证:AE=EF;
(Ⅱ)若将条件中的“点E是BC的中点”改为“E是BC上任意一点”,其余条件不变,则结论AE=EF还成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案