精英家教网 > 初中数学 > 题目详情

如图,已知AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E.∠ADC=70°.

(1)求∠EDC的度数;
(2)若∠ABC=n°,求∠BED的度数(用含n的代数式表示);
(3)将线段BC沿DC方向平移, 使得点B在点A的右侧,其他条件不变,若∠ABC=n°,求∠BED的度数(用含n的代数式表示).

(1)35°;(2)n°+35°;(3)215°-n°.

解析试题分析:(1)根据角平分线的性质结合∠ADC=70°即可求得结果;
(2)过点E作EF∥AB,即可得到AB∥CD∥EF,从而可得∠ABE=∠BEF,∠CDE=∠DEF,再根据角平分线的性质可得∠ABE=∠ABC=n°,∠CDE=∠ADC=35°,即可求得结果;
(3)过点E作EF∥AB,根据角平分线的性质可得∠ABE=∠ABC=n°,∠CDE=∠ADC=35°,再根据平行线的性质可得∠BEF的度数,从而求得结果.
(1)∵DE平分∠ADC,∠ADC=70°,
∴∠EDC=∠ADC=×70°=35°;
(2)过点E作EF∥AB,

∵AB∥CD,
∴AB∥CD∥EF,
∴∠ABE=∠BEF,∠CDE=∠DEF,
∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,
∴∠ABE=∠ABC=n°,∠CDE=∠ADC=35°,
∴∠BED=∠BEF+∠DEF=n°+35°;
(3)过点E作EF∥AB

∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=80°
∴∠ABE=∠ABC=n°,∠CDE=∠ADC=35°
∵AB∥CD,
∴AB∥CD∥EF,
∴∠BEF=180°-∠ABE=180°-n°,∠CDE=∠DEF=35°,
∴∠BED=∠BEF+∠DEF=180°-n°+35°=215°-n°.
考点:平行线的性质,角平分线的性质
点评:本题知识点较多,综合性强,难度较大,是中考常见题,正确作出辅助线是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,已知AB=CD且∠ABD=∠BDC,要证∠A=∠C,判定△ABD≌△CDB的方法是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

9、如图,已知AB∥CD,∠A=38°,则∠1=
142°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB∥CD,∠1=50°25′,则∠2的大小是
129°35′
129°35′

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知 AB∥CD,∠A=53°,则∠1的度数是
127°
127°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB∥CD∥EF,那么下列结论中,正确的是(  )

查看答案和解析>>

同步练习册答案