精英家教网 > 初中数学 > 题目详情
如图,已知在梯形ABCD中,AD∥BC,∠ABC=60°,BD平分∠ABC,且BD⊥DC,CD=4.
(1)求AD的长;
(2)求梯形ABCD的面积.
分析:(1)由在梯形ABCD中,AD∥BC,∠ABC=60°,BD平分∠ABC,易证得△ABD是等腰三角形,由BD⊥DC,∠ABC=60°,易证得梯形ABCD是等腰梯形,继而求得答案;
(2)首先过点D作DE⊥BC于点E,易求得BC的长,然后由勾股定理,可求得DE的长,继而求得答案.
解答:解:(1)∵BD平分∠ABC,∠ABC=60°,
∴∠1=∠2=
1
2
∠ABC=30°.
又∵BD⊥DC,
∴∠C=60°.
∴∠ABC=∠C.
∴AB=CD=4.
∵AD∥BC,
∴∠1=∠3.
又∵∠1=∠2,
∴∠2=∠3.
∴AD=AB=4;

(2)过点D作DE⊥BC于点E,
在Rt△DBC中,∠1=30°,
∴BC=2CD=8.
在Rt△DEC中,∠C=60°,
∴∠4=30°.
∴EC=
1
2
CD=2.
∴DE=
CD2-EC2
=2
3

∴S梯形ABCD=
1
2
(AD+BC)•DE=12
3
点评:此题考查了等腰梯形的判定与性质、等腰三角形的判定与性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知在梯形ABCD中,AD∥BC,AB=DC,且AC⊥BD,AC=6,则该梯形的高DE等于
 
.(结果不取近似值).

查看答案和解析>>

科目:初中数学 来源: 题型:

9、如图,已知在梯形ABCD中,AD∥BC,AB=DC,对角线AC和BD相交于点O,E是BC边上一个动点(E点不与B、C两点重合),EF∥BD交AC于点F,EG∥AC交BD于点G.
(1)求证:四边形EFOG的周长等于2 OB;
(2)请你将上述题目的条件“梯形ABCD中,AD∥BC,AB=DC”改为另一种四边形,其他条件不变,使得结论“四边形EFOG的周长等于2 OB”仍成立,并将改编后的题目画出图形,写出已知、求证、不必证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,已知在梯形ABCD中,AD∥BC,AD+BC=CD,M是AB的中点,DM,CM是否分别是∠ADC和∠DCB的平分线?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知在梯形ABCD中,AB∥CD,BC⊥AB,且AD⊥BD,CD=2,sinA=
23

求梯形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在梯形ABCD中,AD∥BC,点E在边BC上,连接DE,AC.
(1)填空:
CD
+
DE
=
CE
CE
BC
-
BA
=
AC
AC

(2)求作:
AB
+
AD

查看答案和解析>>

同步练习册答案