精英家教网 > 初中数学 > 题目详情
精英家教网如图,点B是函数y=
2x
(x>0)
图象上一点,点A是线段OB上一点,以AB为半径作⊙A恰好与x轴、y轴分别切于点C和点D,则点A的坐标是
 
分析:连接AC,AD,易证四边形OCAD为正方形,即可设点A的坐标为(a,a)(a>0),从而可得点B的横纵坐标相等,设点B的横坐标为x,即可得出x=
2
,故有OB=2,又OB=OA+AB,即2=a
2
+2,即可得出a的值,即A的坐标.
解答:精英家教网解:连接AC,AD,
结合题意,可得四边形OCAD为正方形,
故点A和点B的横纵坐标均相等,
设A(a,a),B(x,x)
可得OA=a
2

又点B是函数y=
2
x
(x>0)
图象上一点,
故可得出x=
2

即OB=2,
又OB=OA+a
即有2=a
2
+a
即a=2
2
-2

即A点的坐标为(2
2
-2
2
2
-2
).
故答案为:(2
2
-2
2
2
-2
).
点评:本题主要考查了圆的切线的性质以及反比例函数的一般应用,通过求证四边形为正方形,得出点的横纵坐标之间的关系,以及两线段之间的数量关系,即可得出结果.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,点A是函数y=
1
x
的图象上的点,点B、C的坐标分别为B(-
2
,-
2
)、C(
2
2
),试利用性质:“函数y=
1
x
的图象上任意一点A都满足|AB-AC|=2
2
”求解下面问题:作∠BAC的内角平分线AE,过B作AE的垂线交AE于F,已知当点A在函数y=
1
x
的图象上运动时,点F总在一个圆上运动,则这圆的半径为(  )
A、1
B、
2
2
C、
2
D、
3
2
2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,点M是函数y=x+
1x
图象上的一点,直线l:y=x,过点M分别作MA⊥y轴,MB⊥l,A,B为垂足,则MA•MB=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,抛物线y=
1
2
x2+x-4与x轴的两个交点分别为A、B,与y轴的交点为C.
(1)请直接写出点A、B、C的坐标;
(2)如图①,点Q是函数y=
1
2
x2+x-4的图象在第三象限上的任一点,点Q的横坐标为m,设四边形AQCB的面积为S,求S与m之间的函数关系式,并求出m这何值时,S有最大值,最大值是多少?
(3)抛物线y=
1
2
x2+x-4的对称轴上是否存在一点H,使△BCH的周长最小?若存在,请直接写出H点坐标;若不存在,请说明理由.
(4)如图②,若点E为线段BC的中点,EF垂直平分BC交x轴于点F(-3,0),点P是抛物线y=
1
2
x2+x-4对称轴上的一点,设P点的纵坐标为t,请直接写出∠PEC为钝角三角形时t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,点B是函数y=
1
x
和y=x的图象在第一象限的交点,点E在函数y=
1
x
的图象上,过B、E两点作x轴的垂线,垂足分别为C、F,直线EF与直线y=x交于点D.试判断DF+EF与2BC的大小,并说明理由.

查看答案和解析>>

同步练习册答案