精英家教网 > 初中数学 > 题目详情

如图,已知正方形ABCD对角线交于点O,点P、点Q分别是BC、CD上的点,DP⊥AQ.求证:OQ⊥OP.

证明:∵DP⊥AQ,
∴∠DAQ+∠DQA=90°,∠CDP+∠CPD=90°,∠DQA+∠CDP=90°
∴∠DAQ=∠CDP
又∵AD=DC,∠ADC=∠DCB=90°
∴△ADQ≌△DCP(ASA)
∴DQ=CP
由正方形性质可知OD=OC,∠ODQ=∠OCP=45°
∴△DOQ≌△COP(SAS)
∴∠1=∠2
∴∠2+∠3=∠1+∠3=90°
∴OP⊥OQ
分析:由DP⊥AQ易证∠DAQ=∠CDP,进而证明△ADQ≌△DCP得DQ=CP,进而证明△DOQ≌△COP得∠1=∠2,即可得∠2+∠3=90°,即可证明OP⊥OQ.
点评:本题考查了正方形各边相等、各内角相等的性质,考查了全等三角形的判定及全等三角形对应边、对应角相等的性质,本题中正确的求证△ADQ≌△DCP得DQ=CP是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知正方形ABCD的边AB与正方形AEFM的边AM在同一直线上,直线BE与DM交于点N.求证:BN⊥DM.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•北碚区模拟)如图,已知正方形ABCD,点E是BC上一点,点F是CD延长线上一点,连接EF,若BE=DF,点P是EF的中点.
(1)求证:DP平分∠ADC;
(2)若∠AEB=75°,AB=2,求△DFP的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知正方形ABCD,点E在BC边上,将△DCE绕某点G旋转得到△CBF,点F恰好在AB边上.
(1)请画出旋转中心G (保留画图痕迹),并连接GF,GE;
(2)若正方形的边长为2a,当CE=
a
a
时,S△FGE=S△FBE;当CE=
2a+
2
a
2
或EC=
2a-
2
a
2
2a+
2
a
2
或EC=
2a-
2
a
2
 时,S△FGE=3S△FBE

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知正方形ABCD的对角线交于O,过O点作OE⊥OF,分别交AB、BC于E、F,若AE=4,CF=3,则EF的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知正方形ABCD的对角线AC,BD相交于点O,E是AC上的一点,过点A作AG⊥BE,垂足为G,AG交BD于点F.
(1)试说明OE=OF;
(2)当AE=AB时,过点E作EH⊥BE交AD边于H.若该正方形的边长为1,求AH的长.

查看答案和解析>>

同步练习册答案