精英家教网 > 初中数学 > 题目详情

已知:如图,在等腰梯形ABCD中,AB∥DC,AD=BC,点E是底边AB的中点.
(1)求证:△DEC是等腰三角形;
(2)若△ADE是等边三角形,求证:四边形DAEC是菱形.

证明:(1)在等腰梯形ABCD中,
∵AD=BC,
∴∠A=∠B,
∵E是底边AB的中点,
∴AE=BE,
∴△AED≌△BEC,
∴ED=EC,
∴△DEC是等腰三角形.
(2)∵△ADE是等边三角形,
∴AD=AE,
∠A=∠DEA=∠CEB=60°,
∴AD∥CE,
∵AB∥DC,
∴四边形DAEC是平行四边形,
又∵AD=AE,
∴四边形DAEC是菱形.
分析:(1)根据等腰梯形的性质得出∠A=∠B,继而利用SAS可证明△AED≌△BEC,从而可得出ED=EC,得出结论.
(2)先证明四边形DAEC是平行四边形,然后结合AD=AE即可得出结论.
点评:此题考查了等腰梯形的性质,属于基础题,解答本题的关键是熟练掌握等腰梯形的性质:同一底边上的两个底角相等,难度一般.
练习册系列答案
相关习题

科目:初中数学 来源:2011年河南省周口市初一下学期相交线与平行线专项训练 题型:解答题

如图,以Rt△ABO的直角顶点O为原点,OA所在的直线为x轴,OB所在的直线为y轴,建立平面直角坐标系.已知OA=4,OB=3,一动点P从O出发沿OA方向,以每秒1个

单位长度的速度向A点匀速运动,到达A点后立即以原速沿AO返回;点Q从A点出发

沿AB以每秒1个单位长度的速度向点B匀速运动.当Q到达B时,P、Q两点同时停止

运动,设P、Q运动的时间为t秒(t>0).

(1) 试求出△APQ的面积S与运动时间t之间的函数关系式;

(2) 在某一时刻将△APQ沿着PQ翻折,使得点A恰好落在AB边的点D处,如图①.

求出此时△APQ的面积.

(3) 在点P从O向A运动的过程中,在y轴上是否存在着点E使得四边形PQBE为等腰梯

形?若存在,求出点E的坐标;若不存在,请说明理由.

(4) 伴随着P、Q两点的运动,线段PQ的垂直平分线DF交PQ于点D,交折线QB-BO-OP于点F. 当DF经过原点O时,请直接写出t的值.

 

查看答案和解析>>

科目:初中数学 来源:2011年河南省周口市初一下学期平移专项训练 题型:解答题

如图,以Rt△ABO的直角顶点O为原点,OA所在的直线为x轴,OB所在的直线为y轴,建立平面直角坐标系.已知OA=4,OB=3,一动点P从O出发沿OA方向,以每秒1个

单位长度的速度向A点匀速运动,到达A点后立即以原速沿AO返回;点Q从A点出发

沿AB以每秒1个单位长度的速度向点B匀速运动.当Q到达B时,P、Q两点同时停止

运动,设P、Q运动的时间为t秒(t>0).

(1) 试求出△APQ的面积S与运动时间t之间的函数关系式;

(2) 在某一时刻将△APQ沿着PQ翻折,使得点A恰好落在AB边的点D处,如图①.

求出此时△APQ的面积.

(3) 在点P从O向A运动的过程中,在y轴上是否存在着点E使得四边形PQBE为等腰梯

形?若存在,求出点E的坐标;若不存在,请说明理由.

(4) 伴随着P、Q两点的运动,线段PQ的垂直平分线DF交PQ于点D,交折线QB-BO-OP于点F. 当DF经过原点O时,请直接写出t的值.

 

查看答案和解析>>

同步练习册答案