精英家教网 > 初中数学 > 题目详情
在平面直角坐标系中,O是坐标原点,A、B两点的坐标分别为(3,0)、(0,4),则△AOB的内心与外心之间的距离是
 
分析:根据勾股定理求出AB,过中点M作MH⊥X轴于H,根据三角形的中位线求出M的坐标,连接QF、QE、QM,证正方形QEOF,推出QE=QF=OE=OF,根据切线长定理得到3-OE+4-OE=5,求出Q的坐标,根据勾股定理求出即可.
解答:精英家教网解:OB=4,OA=3,由勾股定理得:BA=5,
过中点M作MH⊥X轴于H,
根据三角形的中位线定理得:MH=
1
2
OB=2,
即M的纵坐标是2,
同理M的横坐标是1.5,
∴M(1.5,2),
连接QF、QE、QM,
∵圆Q是△AOB的内切圆,
∴BE=BD,AF=AD,
QE⊥OB,QF⊥OA,
∴∠QEO=∠QFO=∠EOF=90°,
∵QE=QF
∴四边形EQFO是正方形,
∴QE=QF=OE=OF,
∵OB=4,OA=3,
∴3-OE+4-OE=5,
OE=OF=1,
Q(1,1),
由勾股定理得:QM=
(1.5-1)2+(2-1)2
=
5
2

故答案为:
5
2
点评:本题主要考查对勾股定理,三角形的中位线,正方形的性质和判定,切线长定理,三角形的外接圆与外心,三角形的内切圆与内心,坐标与图形性质等知识点的理解和掌握,综合运用性质进行推理是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

28、在平面直角坐标系中,点P到x轴的距离为8,到y轴的距离为6,且点P在第二象限,则点P坐标为
(-6,8)

查看答案和解析>>

科目:初中数学 来源: 题型:

10、在平面直角坐标系中,点P1(a,-3)与点P2(4,b)关于y轴对称,则a+b=
-7

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中,有A(2,3)、B(3,2)两点.
(1)请再添加一点C,求出图象经过A、B、C三点的函数关系式.
(2)反思第(1)小问,考虑有没有更简捷的解题策略?请说出你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,开口向下的抛物线与x轴交于A、B两点,D是抛物线的顶点,O为精英家教网坐标原点.A、B两点的横坐标分别是方程x2-4x-12=0的两根,且cos∠DAB=
2
2

(1)求抛物线的函数解析式;
(2)作AC⊥AD,AC交抛物线于点C,求点C的坐标及直线AC的函数解析式;
(3)在(2)的条件下,在x轴上方的抛物线上是否存在一点P,使△APC的面积最大?如果存在,请求出点P的坐标和△APC的最大面积;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、在平面直角坐标系中,把一个图形先绕着原点顺时针旋转的角度为θ,再以原点为位似中心,相似比为k得到一个新的图形,我们把这个过程记为【θ,k】变换.例如,把图中的△ABC先绕着原点O顺时针旋转的角度为90°,再以原点为位似中心,相似比为2得到一个新的图形△A1B1C1,可以把这个过程记为【90°,2】变换.
(1)在图中画出所有符合要求的△A1B1C1
(2)若△OMN的顶点坐标分别为O(0,0)、M(2,4)、N(6,2),把△OMN经过【θ,k】变换后得到△O′M′N′,若点M的对应点M′的坐标为(-1,-2),则θ=
0°(或360°的整数倍)
,k=
2

查看答案和解析>>

同步练习册答案