精英家教网 > 初中数学 > 题目详情
15.如图所示,在长方形ABCD中,AB=6厘米,BC=12厘米,点P沿AB边从点A开始向点B以1厘米/秒的速度移动,点Q沿BC从点B开始向点C以2厘米/秒的速度移动,如果P、Q同时出发,用t(秒)表示移动的时间(0≤t≤6).
(1)PB=2厘米时,求点P移动多少秒?
(2)t为何值时,△PBQ为等腰直角三角形?
(3)求四边形PBQD的面积.

分析 (1)由AB、PB的长可求得AP的长,则可求得t的值;
(2)根据等腰直角三角形的性质可求得PB=BQ,则可得到关于t的方程,可求得t的值;
(3)可用t分别表示出S△APD、S△QCD,再利用面积的和差可求得四边形PBQD的面积.

解答 解:
(1)∵PB=2cm,AB=6cm,
∴AP=AB-PB=6-2=4(秒),
即点P移动4秒;

(2)∵△PBQ为等腰直角三角形,
∴PB=BQ,即6-t=2t,解得t=2
∴当t的值为2秒时,△PBQ为等腰直角三角形;

(3)由题意可知AP=t,AB=6,BQ=2t,BC=12,
∴PB=6-t,QC=12-2t,CD=6,AD=12,
∴S△APD=$\frac{1}{2}$AP•AD=$\frac{1}{2}$t×12=6t,S△QCD=$\frac{1}{2}$QC•CD=$\frac{1}{2}$(12-2t)6=36-6t,
∴S四边形PBQD=S矩形ABCD-S△APD-S△QCD=72-6t-(36-6t)=36cm2

点评 本题为四边形的综合应用,涉及等腰三角形的性质、三角形的面积、方程的思想及转化思想.用t表示出相应线段的长度,化动为静是解决这类运动型问题的一般思想.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.如图,在?ABCD中,EF过角线的交点O,若AD=8cm,AB=6cm,OE=4cm,求四边形ABFE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.计算:(1)$\sqrt{1{2}^{2}+{5}^{2}}$=13;(2)$\sqrt{1{0}^{2}-{6}^{2}}$=8;(3)$\sqrt{1{0}^{-2}}$=$\frac{1}{10}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,BE平分∠ABF,DF⊥AB交AB于点D,AC⊥BF交BF于点C,AC,FD相交于点E,若∠F=30°,DE=1,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图(1),是一个长为2a宽为2b(a>b)的矩形,用剪刀沿矩形的两条对角轴剪开,把它分成四个全等的小矩形,然后按图(2)拼成一个新的正方形,求中间空白部分的面积(用含a、b的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,是一个零件的形状,按规定∠A应等于90°,∠B与∠C分别是32°和27°,检测工人量得∠BDC=150°,问该零件是否合格?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.现有一副直角三角板(角度分别为30°、60°、90°和45°、45°、90°)如图(1)放置,其中一块三角板的直角边AC垂直于数轴,AC的中点过数轴的原点O,AC=8,斜边AB交数轴于点G,点G对应数轴上的数是4;另一块三角板的直角边AE交数轴于点F,斜边AD交数轴于点H.
(1)如果△AGH的面积是10,△AHF的面积是8,则点F对应数轴上的数是-5,点H对应数轴上的数是-1;
(2)如图(2),设∠AHF的平分线和∠AGH的平分线交于点M,若∠HAO=α,试用α来表示∠M的大小;
(3)如图(2),设∠AHF的平分线和∠AGH的平分线交于点M,设∠EFH的平分线和∠FOC的平分线交于点N,求∠N+∠M的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.矩形ABCD的边AB、BC的长分别是关于x的方程x2+(2m-1)x+m2+3=0的根.
(1)若矩形ABCD是正方形,求m的值.
(2)若矩形ABCD的面积为12时,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在平面直角坐标系中,A(2,2),B(-1,0),C (3,0)
(1)求△ABC面积;
(2)在y轴上存在一点D,使得△AOD的面积是△ABC面积的2倍,求出点D的坐标;
(3)在平面内有点P(3,m),是否存在m值,使△AOP的面积等于△ABC面积的2倍?若存在,直接写出m的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案