精英家教网 > 初中数学 > 题目详情
7.下列方程中,没有实数根的是(  )
A.x2-2x=0B.x2-2x-1=0C.x2-2x+1=0D.x2-2x+2=0

分析 分别计算各方程的根的判别式的值,然后根据判别式的意义判定方程根的情况即可.

解答 解:A、△=(-2)2-4×1×0=4>0,方程有两个不相等的实数根,所以A选项错误;
B、△=(-2)2-4×1×(-1)=8>0,方程有两个不相等的实数根,所以B选项错误;
C、△=(-2)2-4×1×1=0,方程有两个相等的实数根,所以C选项错误;
D、△=(-2)2-4×1×2=-4<0,方程没有实数根,所以D选项正确.
故选D.

点评 本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.如图,已知A(0,4),E(8,0),点P(a,0)是线段OE上的动点,点B为AP的中点,以BP为边向右边作正方形PBCD,过点B作BM⊥x轴于点M,过点D作DF⊥x轴于点F,连接DE.
(1)判断DF,BM,MF之间的关系,并说明理由;
(2)求点D的坐标(用含a的代数式表示);
(3)当点P在线段OE(点O,点E除外)上运动时,设△PDE的面积为S,写出S与a的函数关系式,当点P运动到何处时,△PDE的面积最大,最大是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.2016年11月1日,万众期待的歼20战机现身珠海航展,上午9时,某航空爱好者在地面C处测得点A处的歼20战机的仰角是30°,正以300米/秒的速度向正西方向航行,1分钟后到达点B处,此时航空爱好者测得其仰角为45°,如图所示,求歼20战机在珠海航展表演时的飞行高度.(精确到100米)参考数据:$\sqrt{2}$≈1.41,$\sqrt{3}$≈1.73.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如图,在菱形ABCD中,∠ABC=120°,AB=10cm,点P是这个菱形内部或边上的一点.若以P,B,C为顶点的三角形是等腰三角形,则P,A(P,A两点不重合)两点间的最短距离为10$\sqrt{3}$-10cm.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.-2的倒数是(  )
A.2B.-2C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为(  )
A.$\frac{1}{8}$B.$\frac{1}{6}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.随着交通道路的不断完善,带动了旅游业的发展,某市旅游景区有A、B、C、D、E等著名景点,该市旅游部门统计绘制出2017年“五•一”长假期间旅游情况统计图,根据以下信息解答下列问题:
(1)2017年“五•一”期间,该市周边景点共接待游客50万人,扇形统计图中A景点所对应的圆心角的度数是108°,并补全条形统计图.
(2)根据近几年到该市旅游人数增长趋势,预计2018年“五•一”节将有80万游客选择该市旅游,请估计有多少万人会选择去E景点旅游?
(3)甲、乙两个旅行团在A、B、D三个景点中,同时选择去同一景点的概率是多少?请用画树状图或列表法加以说明,并列举所有等可能的结果.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,某校教学楼AB后方有一斜坡,已知斜坡CD的长为12米,坡角α为60°,根据有关部门的规定,∠α≤39°时,才能避免滑坡危险,学校为了消除安全隐患,决定对斜坡CD进行改造,在保持坡脚C不动的情况下,学校至少要把坡顶D向后水平移动多少米才能保证教学楼的安全?(结果取整数)
(参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,$\sqrt{2}$≈1.41,$\sqrt{3}$≈1.73,$\sqrt{5}$≈2.24)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.某房地产开发公司计划建A、B两种户型的住房共80套,A种户型每套成本和售价分别为90万元和102万元,B种户型每套成本和售价分别为60万元和70万元.设计划建A户型x套,所建户型全部售出后获得的总利润为W万元.
【思考】
(1)根据所给条件,完成下表:
A户型B户型
套数x80-x
利润(万元)12x10(80-x)
(2)求W与x之间的函数解析式;
【探究】
(3)该公司所建房资金不少于5700万元,且所筹资金全部用于建房,若A户型不超过32套,则该公司有哪几种建房方案?
(4)在(3)的前提下,根据国家房地产政策,公司计划每套A户型住房的售价降低a万元(0<a≤3),B户型住房的售价不变,且预计所建的两种住房全部售出,求该公司获得最大利润的方案.
【决策】
为了适应市场需要,该公司在总套数不变的情况下,改建若干套C户型,现已知C户型每套成本110万元,售价118万元.若该公司所筹资金为6300万元且刚好用完,则当x=45套时,该公司所建房售出后获得的总利润最大.

查看答案和解析>>

同步练习册答案