精英家教网 > 初中数学 > 题目详情

如图,已知抛物线y=ax2+bx+3与x轴、y轴分别交于A(1,0)、B(0,3)两点,x轴上有一点C(-1,0),把△BOC向右平移2个单位长度后,一条直角边恰好在抛物线的对称轴上.
(1)求二次函数的关系式;
(2)把△BOC继续向右平移,当B在抛物线上时,求第二次平移的距离.

解:(1)由题意可知:抛物线的对称轴应该是x=-=2,
已知抛物线过A(1,0).
可得
解得:
因此抛物线的解析式应该是:y=x2-4x+3;

(2)根据二次函数的对称性可知,第二次平移的距离是2.
分析:(1)由题意可知:BO向右平移两个单位后恰好是抛物线的对称轴,那么可得出抛物线的对称轴应该是x=-=2,然后可将A的坐标代入函数式中,和对称轴的表达式联立方程组求出a、b的值,进而得出二次函数的解析式.
(2)根据二次函数对称的性质即可得出第二次平移的距离应该是2.
点评:本题主要考查了用待定系数法求二次函数解析式以及二次函数对称轴的性质等知识点.本题中二次函数的对称轴的应用是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线与x轴交于A(-1,0)、B(4,0)两点,与y轴交于点精英家教网C(0,3).
(1)求抛物线的解析式;
(2)求直线BC的函数解析式;
(3)在抛物线上,是否存在一点P,使△PAB的面积等于△ABC的面积,若存在,求出点P的坐标,若不存在,请说明理由.
(4)点Q是直线BC上的一个动点,若△QOB为等腰三角形,请写出此时点Q的坐标.(可直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)精英家教网、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•衡阳)如图,已知抛物线经过A(1,0),B(0,3)两点,对称轴是x=-1.
(1)求抛物线对应的函数关系式;
(2)动点Q从点O出发,以每秒1个单位长度的速度在线段OA上运动,同时动点M从O点出发以每秒3个单位长度的速度在线段OB上运动,过点Q作x轴的垂线交线段AB于点N,交抛物线于点P,设运动的时间为t秒.
①当t为何值时,四边形OMPQ为矩形;
②△AON能否为等腰三角形?若能,求出t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)点P是抛物线对称轴上一点,若△PAB∽△OBC,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c的顶点是(-1,-4),且与x轴交于A、B(1,0)两点,交y轴于点C;
(1)求此抛物线的解析式;
(2)①当x的取值范围满足条件
-2<x<0
-2<x<0
时,y<-3;
     ②若D(m,y1),E(2,y2)是抛物线上两点,且y1>y2,求实数m的取值范围;
(3)直线x=t平行于y轴,分别交线段AC于点M、交抛物线于点N,求线段MN的长度的最大值;
(4)若以抛物线上的点P为圆心作圆与x轴相切时,正好也与y轴相切,求点P的坐标.

查看答案和解析>>

同步练习册答案