精英家教网 > 初中数学 > 题目详情

如图,点A点B是y=数学公式的图象上关于原点对称的两点,且AC∥y轴,BC∥x轴,△ABC面积为S,则S的值为


  1. A.
    S=1
  2. B.
    1<S<2
  3. C.
    S=2
  4. D.
    S>2
C
分析:连接OC,设AC与x轴交于点D,BC与y轴交于点E.首先由反比例函数y=的比例系数k的几何意义,可知△AOD的面积等于|k|,再由A、B两点关于原点对称,BC∥x轴,AC∥y轴,可知S△AOC=2×S△AOD,S△ABC=2×S△AOC,从而求出结果.
解答:解:如图,连接OC,设AC与x轴交于点D,BC与y轴交于点E.
∵A、B两点关于原点对称,BC∥x轴,AC∥y轴,
∴AC⊥x轴,AD=CD,OA=OB.
∴S△COD=S△AOD=
∴S△AOC=1,
∴S△BOC=S△AOC=1,
∴S△ABC=S△BOC+S△AOC=2.
故选C.
点评:本题主要考查了三角形一边上的中线将三角形的面积二等分及反比例函数的比例系数k的几何意义:反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即S=|k|.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,点E(-4,0),以点E为圆心,2为半径的圆与x轴交于A、B两点,抛物线y=
1
6
x2+bx+c过点A和点B,与y轴交于C点.
精英家教网(1)求抛物线的解析式;
(2)求出点C的坐标,并画出抛物线的大致图象;
(3)点Q(m,
16
3
)(m<0)在抛物线y=
1
6
x2+bx+c的图象上,点P为此抛物线对称轴上的一个动点,求PQ+PB的最小值;
(4)CF是圆E的切线,点F是切点,在抛物线上是否存在一点M,使△COM的面积等于△COF的面积?若存在,请求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:第27章《二次函数》中考题集(35):27.3 实践与探索(解析版) 题型:解答题

如图①,点A′,B′的坐标分别为(2,0)和(0,-4),将△A′B′O绕点O按逆时针方向旋转90°后得△ABO,点A′的对应点是点A,点B′的对应点是点B.
(1)写出A,B两点的坐标,并求出直线AB的解析式;
(2)将△ABO沿着垂直于x轴的线段CD折叠,(点C在x轴上,点D在AB上,点D不与A,B重合)如图②,使点B落在x轴上,点B的对应点为点E.设点C的坐标为(x,0),△CDE与△ABO重叠部分的面积为S.
①试求出S与x之间的函数关系式(包括自变量x的取值范围);
②当x为何值时,S的面积最大,最大值是多少?
③是否存在这样的点C,使得△ADE为直角三角形?若存在,直接写出点C的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:第23章《二次函数与反比例函数》中考题集(33):23.5 二次函数的应用(解析版) 题型:解答题

如图①,点A′,B′的坐标分别为(2,0)和(0,-4),将△A′B′O绕点O按逆时针方向旋转90°后得△ABO,点A′的对应点是点A,点B′的对应点是点B.
(1)写出A,B两点的坐标,并求出直线AB的解析式;
(2)将△ABO沿着垂直于x轴的线段CD折叠,(点C在x轴上,点D在AB上,点D不与A,B重合)如图②,使点B落在x轴上,点B的对应点为点E.设点C的坐标为(x,0),△CDE与△ABO重叠部分的面积为S.
①试求出S与x之间的函数关系式(包括自变量x的取值范围);
②当x为何值时,S的面积最大,最大值是多少?
③是否存在这样的点C,使得△ADE为直角三角形?若存在,直接写出点C的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2012年陕西省西安市高新区逸翠园学校中考数学三模试卷(解析版) 题型:解答题

如图①,点A′,B′的坐标分别为(2,0)和(0,-4),将△A′B′O绕点O按逆时针方向旋转90°后得△ABO,点A′的对应点是点A,点B′的对应点是点B.
(1)写出A,B两点的坐标,并求出直线AB的解析式;
(2)将△ABO沿着垂直于x轴的线段CD折叠,(点C在x轴上,点D在AB上,点D不与A,B重合)如图②,使点B落在x轴上,点B的对应点为点E.设点C的坐标为(x,0),△CDE与△ABO重叠部分的面积为S.
①试求出S与x之间的函数关系式(包括自变量x的取值范围);
②当x为何值时,S的面积最大,最大值是多少?
③是否存在这样的点C,使得△ADE为直角三角形?若存在,直接写出点C的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年辽宁省朝阳市中考数学试卷(解析版) 题型:解答题

(2009•朝阳)如图①,点A′,B′的坐标分别为(2,0)和(0,-4),将△A′B′O绕点O按逆时针方向旋转90°后得△ABO,点A′的对应点是点A,点B′的对应点是点B.
(1)写出A,B两点的坐标,并求出直线AB的解析式;
(2)将△ABO沿着垂直于x轴的线段CD折叠,(点C在x轴上,点D在AB上,点D不与A,B重合)如图②,使点B落在x轴上,点B的对应点为点E.设点C的坐标为(x,0),△CDE与△ABO重叠部分的面积为S.
①试求出S与x之间的函数关系式(包括自变量x的取值范围);
②当x为何值时,S的面积最大,最大值是多少?
③是否存在这样的点C,使得△ADE为直角三角形?若存在,直接写出点C的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案