精英家教网 > 初中数学 > 题目详情

已知:直线y=数学公式x+c与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+4c与直线AB交于A、D两点,与y轴交于点C.
(1)若c=-1,点C为抛物线的顶点,求点D的坐标;
(2)若c>0,点O到直线AB的距离为数学公式,∠CDB=∠ACB,求抛物线的解析式.

解:(1)∵c=-1,
∴直线y=x-1,
当y=0时,x-1=0,
解得x=2,
∴点A(2,0),
∵抛物线y=ax2+bx+4c与y轴交于点C,c=-1,
∴点C(0,-4),
又∵点C为抛物线的顶点,
∴-=0,
解得b=0,
把点A(2,0)代入抛物线解析式得,4a-4=0,
解得a=1,
所以,抛物线解析式为y=x2-4,
联立
解得(为点A坐标),
所以,点D(-,-);

(2)令y=0,则x+c=0,解得x=-2c,
令x=0,则y=c,
所以,点A(-2c,0),B(0,c),
∵c>0,
∴OA=2c,OB=c,
根据勾股定理,AB===c,
S△ABC=×=×2c•c,
解得c=1,
∴OA=2,OB=1,AB=
又∵x=0时,y=4c=4×1=4,
∴点C坐标为(0,4),
∴OC=4,
∴AC===2
∵∠CDB=∠ACB,∠CAB为公共角,
∴△ABC∽△ACD,
=
=
解得AD=4
过点D作DE⊥x轴于E,则△ABO∽△ADE,
==
==
解得AE=8,DE=4,
∴OE=AE-OA=8-2=6,
∴点D(6,4),
∵抛物线y=ax2+bx+4过点A(-2,0)、D(6,4),

解得
所以,抛物线解析式为y=-x2+x+4.
分析:(1)根据c的值确定出直线解析式,然后求出点A的坐标,再根据C为顶点可得b=0,然后把点A的坐标代入抛物线解析式求出a的值,再根据直线与抛物线解析式联立求解即可得到点D的坐标;
(2)根据直线解析式求出点A、B的坐标,从而得到OA、OB的长度,然后根据相似三角形对应边成比例列出比例式求出c=1,从而求出OA、OB、AB的长度,再根据勾股定理求出AB,根据∠CDB=∠ACB,∠CAB为公共角判定△ABC和△ACD相似,利用相似三角形对应边成比例列式求出AD的长度,过点D作DE⊥x轴于E,利用相似三角形对应边成比例求出AE、DE的长,再求出OE的长,然后得到点D的坐标,再利用待定系数法求二次函数解析式解答.
点评:本题是二次函数综合题型,主要涉及求直线与坐标轴的交点,待定系数法求函数解析式(包括二次函数解析式与一次函数解析式),联立两函数解析式求交点坐标,相似三角形的判定与性质,综合性较强,难度中等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:直线y=-
n
n+1
x+
2
n+1
(n为正整数)与两坐标轴围成的三角形面积为Sn,则S1+S2+S3+…+S2011=(  )
A、
1005
2011
B、
2011
2012
C、
2010
2011
D、
2011
4024

查看答案和解析>>

科目:初中数学 来源: 题型:

19、如图,已知两直线a,b相交于O,∠2=30°,则∠1=
150
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•普陀区一模)在平面直角坐标系中,△ABC的顶点分别是A(-1,0),B(3,0),C(0,2),已知动直线y=m(0<m<2)与线段AC、BC分别交于D、E两点,而在x轴上存在点P,使得△DEP为等腰直角三角形,那么m的值等于
4
3
或1
4
3
或1

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:直线y=-2x+4交x轴于点A,交y轴于点B,点C为x轴上一点,AC=1,且OC<OA.抛物线y=ax2+bx+c(a≠0)经过点A、B、C.
(1)求该抛物线的表达式;
(2)点D的坐标为(-3,0),点P为线段AB上的一点,当锐角∠PDO的正切值是
12
时,求点P的坐标;
(3)在(2)的条件下,该抛物线上的一点E在x轴下方,当△ADE的面积等与四边形APCE的面积时,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:直线y=kx+b的图象过点A(-3,1);B(-1,2),
(1)求:k和b的值;
(2)求:△AOB的面积(O为坐标原点);
(3)在x轴上有一动点C使得△ABC的周长最小,求C点坐标.

查看答案和解析>>

同步练习册答案