精英家教网 > 初中数学 > 题目详情
在直角坐标系中,以原点为圆心,半径为5的圆内有一点P(0,-3),那么经过点P的所有弦中,最短的弦的长为
[     ]
A.4
B.5
C.8
D.10
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知,如图,在直角坐标系中,以y轴上的点C为圆心,2为半径的圆与x轴相切于原点O,点P在x轴的负半轴上,PA切⊙C于点A,AB为⊙C的直径,PC交OA于点D.
(1)求证:PC⊥OA;
(2)若△APO为等边三角形,求直线AB的解析式;
(3)若点P在x轴的负半轴上运动,原题的其他条件不变,设点P的坐标为(x,0),四边形POCA的面积为S,求S与点P的横坐标x之间的函数关系式,并写出自变量的取值范围;
(4)当点P在x轴的负半轴上运动时,原题的其他条件不变,分析并判断是否存在这样的一点精英家教网P,使S四边形POCA=S△AOB?若存在,请直接写出点P的坐标;若不存在,请简要说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已如:如图,在直角坐标系中,以y轴上的点C为圆心,2为半径的圆与x轴相切于原点O,AB为⊙C的直径,PA切⊙O于点A,交x轴的负半轴于点P,连接PC交OA于点D.
(1)求证:PC⊥OA;
(2)若点P在x轴的负半轴上运动,原题的其他条件不变,设点P的坐标为(x,0),四边形
POCA的面积为S,求S与点P的横坐标x之间的函数关系式;
(3)在(2)的情况下,分析并判断是否存在这样的一点P,使S四边形POCA=S△AOB,若存在,直接写出点P的坐标(不写过程);若不存在,简要说明理由.

查看答案和解析>>

科目:初中数学 来源:2001年全国中考数学试题汇编《圆》(05)(解析版) 题型:解答题

(2001•沈阳)已知,如图,在直角坐标系中,以y轴上的点C为圆心,2为半径的圆与x轴相切于原点O,点P在x轴的负半轴上,PA切⊙C于点A,AB为⊙C的直径,PC交OA于点D.
(1)求证:PC⊥OA;
(2)若△APO为等边三角形,求直线AB的解析式;
(3)若点P在x轴的负半轴上运动,原题的其他条件不变,设点P的坐标为(x,0),四边形POCA的面积为S,求S与点P的横坐标x之间的函数关系式,并写出自变量的取值范围;
(4)当点P在x轴的负半轴上运动时,原题的其他条件不变,分析并判断是否存在这样的一点P,使S四边形POCA=S△AOB?若存在,请直接写出点P的坐标;若不存在,请简要说明理由.

查看答案和解析>>

科目:初中数学 来源:2001年全国中考数学试题汇编《一次函数》(02)(解析版) 题型:解答题

(2001•沈阳)已知,如图,在直角坐标系中,以y轴上的点C为圆心,2为半径的圆与x轴相切于原点O,点P在x轴的负半轴上,PA切⊙C于点A,AB为⊙C的直径,PC交OA于点D.
(1)求证:PC⊥OA;
(2)若△APO为等边三角形,求直线AB的解析式;
(3)若点P在x轴的负半轴上运动,原题的其他条件不变,设点P的坐标为(x,0),四边形POCA的面积为S,求S与点P的横坐标x之间的函数关系式,并写出自变量的取值范围;
(4)当点P在x轴的负半轴上运动时,原题的其他条件不变,分析并判断是否存在这样的一点P,使S四边形POCA=S△AOB?若存在,请直接写出点P的坐标;若不存在,请简要说明理由.

查看答案和解析>>

科目:初中数学 来源:2001年辽宁省沈阳市中考数学试卷(解析版) 题型:解答题

(2001•沈阳)已知,如图,在直角坐标系中,以y轴上的点C为圆心,2为半径的圆与x轴相切于原点O,点P在x轴的负半轴上,PA切⊙C于点A,AB为⊙C的直径,PC交OA于点D.
(1)求证:PC⊥OA;
(2)若△APO为等边三角形,求直线AB的解析式;
(3)若点P在x轴的负半轴上运动,原题的其他条件不变,设点P的坐标为(x,0),四边形POCA的面积为S,求S与点P的横坐标x之间的函数关系式,并写出自变量的取值范围;
(4)当点P在x轴的负半轴上运动时,原题的其他条件不变,分析并判断是否存在这样的一点P,使S四边形POCA=S△AOB?若存在,请直接写出点P的坐标;若不存在,请简要说明理由.

查看答案和解析>>

同步练习册答案