精英家教网 > 初中数学 > 题目详情
如图,AB是⊙O直径,OB=6,弦CD=10,则弦心距OP的长为(  )
分析:连接OD,则OD=OB=6,根据垂径定理求出DP,根据勾股定理求出OP即可.
解答:解:
连接OD,则OD=OB=6,
∵AB⊥CD,AB过O,
∴DP=CP=
1
2
CD,
∵CD=10,
∴DP=5,
在Rt△DPO中,由勾股定理得:OP=
OD2-DP2
=
62-52
=
11

故选D.
点评:本题考查了垂径定理和勾股定理的应用,关键是构造直角三角形和求出PD长.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,AB是⊙O直径,D为⊙O上一点,AT平分∠BAD交⊙O于点T,过T作AD的垂线交AD的延长线于点C.
(1)求证:CT为⊙O的切线;
(2)若⊙O半径为2,CT=
3
,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AB是⊙O直径,BC是弦,OD⊥BC于E交弧BC于D.根据中考改编
(1)请写出四个不同类型的正确结论;
(2)连接CD、DB设∠CDB=α,∠ABC=β,你认为α=β+90°这个结论正确吗?若正确请证明过程.若不正确请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AB是⊙O直径,C、D是⊙O上的两点,若∠BAC=20°,
AD
=
DC
,则∠DAC的度数是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB是⊙O直径,弦CD交AB于E,∠AEC=45°,AB=2.设AE=x,CE2+DE2=y.下列图象中,能表示y与x的函数关系是的(  )

查看答案和解析>>

同步练习册答案