精英家教网 > 初中数学 > 题目详情
已知正方形ABCD,绕A点顺时针旋转45°得到正方形AB′C′D′,如图所示,如果正方形ABCD边长为1,则四边形的ABED′周长是
2
2
2
2
分析:作D′H⊥AB于H,EP⊥D′H于P,根据旋转的性质得到AD′=AD=AB=1,∠DAD′=45°,则∠D′AH=45°,可判断△AHD′为等腰直角三角形,根据等腰直角三角形的性质得到AH=D′H=
2
2
AD′=
2
2
,∠AD′H=45°,于是可计算出BH=PE=1-
2
2
,∠ED′P=45°,也得到△PED′为等腰直角三角形,则DE′=
2
PE=
2
(1-
2
2
)=
2
-1,D′P=PE=1-
2
2
,再计算出BE=PH=D′H-D′P=
2
2
-(1-
2
2
)=
2
-1,然后利用周长公式计算四边形的ABED′周长.
解答:解:作D′H⊥AB于H,EP⊥D′H于P,如图,
∵正方形ABCD,绕A点顺时针旋转45°得到正方形AB′C′D′,
∴AD′=AD=AB=1,∠DAD′=45°,
∴∠D′AH=45°,
∴△AHD′为等腰直角三角形,
∴AH=D′H=
2
2
AD′=
2
2
,∠AD′H=45°,
∴BH=PE=1-
2
2
,∠ED′P=45°,
∴△PED′为等腰直角三角形,
∴DE′=
2
PE=
2
(1-
2
2
)=
2
-1,D′P=PE=1-
2
2

∴BE=PH=D′H-D′P=
2
2
-(1-
2
2
)=
2
-1,
∴四边形的ABED′周长=AD′+AB+BE+ED′=1+1+
2
-1+
2
-1=2
2

故答案为2
2
点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了正方形的性质以及等腰直角三角形的判定与性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,已知正方形ABCD中,对角线AC、BD交于O点,过O点作OE⊥OF分别交DC于E,交BC于F,∠FEC的角平分线EP交直线AC于P.
(1)①求证:OE=OF;
②写出线段EF、PC、BC之间的一个等量关系式,并证明你的结论;
(2)如图2,当∠EOF绕O点逆时针旋转一个角度,使E、F分别在CD、BC的延长线上,请完成图形并判断(1)中的结论①、②是否分别成立?若不成立,写出相应的结论(所写结论均不必证明).
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知正方形ABCD的边长与Rt△EFG的直角边EF的长均为4cm,FG=8cm,AB与FG在同一条直线l上、开始时点F与点B重合,让Rt△EFG以每秒1cm速度在直线l上从右往左移动,精英家教网直至点G与点B重合为止.设x秒时Rt△EFG与正方形ABCD重叠部分的面积记为ycm2
(1)当x=2秒时,求y的值;
(2)求y与x之间的函数关系式,并写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知正方形ABCD的边长为4厘米,E,F分别为边DC,BC上的点,BF=1厘米,CE=2厘米,BE,DF相交于点G,求四边形CEGF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2012•惠山区一模)阅读与证明:
如图,已知正方形ABCD中,E、F分别是CD、BC上的点,且∠EAF=45°,

求证:BF+DE=EF.
分析:证明一条线段等于另两条线段的和,常用“截长法”或“补短法”,将线段BF、DE放在同一直线上,构造出一条与BF+DE相等的线段.如图1延长ED至点F′,使DF′=BF,连接A F′,易证△ABF≌△ADF′,进一步证明△AEF≌△AEF′,即可得结论.
(1)请你将下面的证明过程补充完整.
证明:延长ED至F′,使DF′=BF,
∵四边形ABCD是正方形
∴AB=AD,∠ABF=∠ADF′=90°,
∴△ABF≌△ADF’(SAS)
应用与拓展:如图建立平面直角坐标系,使顶点A与坐标原点O重合,边OB、OD分别在x轴、y轴的正半轴上.
(2)设正方形边长OB为30,当E为CD中点时,试问F为BC的几等分点?并求此时F点的坐标;
(3)设正方形边长OB为30,当EF最短时,直接写出直线EF的解析式:
y=-x+30
2
y=-x+30
2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知正方形ABCD边长为2,E、F、G、H分别为各边上的点,且AE=BF=CG=DH.
(1)求证:△EBF≌△FCG;
(2)设四边形EFGH的面积为s,AE为x,求s与x的函数解析式,并写出x的取值范围;
(3)当x为何值时,正方形EFGH的面积最小?最小值是多少?

查看答案和解析>>

同步练习册答案