精英家教网 > 初中数学 > 题目详情
8.如图,矩形ABCD中,AB=3,BC=4,若将矩形折叠,使点C和点A重合,则折痕EF的长为(  )
A.$\frac{15}{4}$B.$\frac{15}{8}$C.15D.16

分析 先连接AF,由于矩形关于EF折叠,所以EF垂直平分AC,那么就有AF=CF,又ABCD是矩形,那么AB=CD,AD=BC,在Rt△ABF中,(设CF=x),利用勾股定理可求出CF=$\frac{25}{8}$,在Rt△ABC中,利用勾股定理可求AC=5,在Rt△COF中再利用勾股定理可求出OF=$\frac{15}{8}$,同理可求OE=$\frac{15}{8}$,所以EF=OE+OF=$\frac{15}{4}$.

解答 解:连接AF.
∵点C与点A重合,折痕为EF,即EF垂直平分AC,
∴AF=CF,AO=CO,∠FOC=90°.
又∵四边形ABCD为矩形,
∴∠B=90°,AB=CD=3,AD=BC=4.
设CF=x,则AF=x,BF=4-x,
在Rt△ABC中,由勾股定理得
AC2=BC2+AB2=52,且O为AC中点,
∴AC=5,OC=$\frac{1}{2}$AC=$\frac{5}{2}$.
∵AB2+BF2=AF2
∴32+(4-x)2=x2
∴x=$\frac{25}{8}$.
∵∠FOC=90°,
∴OF2=FC2-OC2=($\frac{25}{8}$)2-($\frac{5}{2}$)2=($\frac{15}{8}$)2
∴OF=$\frac{15}{8}$.
同理OE=$\frac{15}{8}$.
即EF=OE+OF=$\frac{15}{4}$.
故选:A.

点评 该题主要考查了翻折变换的性质及其应用问题;解题的关键是作辅助线,灵活运用翻折变换的性质、勾股定理等几何知识点来分析、判断、推理或解答.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

14.在平面直角坐标系中,如果点A的坐标为(m2+1,-2015),那么点A在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.抛物线y=ax2+3交x轴于A(-4,0)、B两点,交y轴于C.将一把宽度为1.2的直尺如图放置在直角坐标系中,使直尺边A′D′∥BC,直尺边A′D′交x轴于E,交AC于F,交抛物线于G,直尺另一边B′C′交x轴于D.当点D与点A重合时,把直尺沿x轴向右平移,当点E与点B重合时,停止平移,在平移过程中,△FDE的面积为S.
(1)请你求出S的最大值及抛物线解析式;
(2)在直尺平移过程中,直尺边B′C′上是否存在一点P,使点P、D、E、F构成的四边形这菱形,若存在,请你求出点P坐标;若不存在,请说明理由;
(3)过G作GH⊥x轴于H
①在直尺平移过程中,请你求出GH+HO的最大值;
②点Q、R分别是HC、HB的中点,请你直接写出在直尺平移过程中,线段QR扫过的图形的面积和周长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,∠AOB=60°,点C在∠AOB的平分线上,OC=4,点P、Q分别是射线OA、OB上不同于O的一点,且四边形OPCQ的内角∠PCQ=120°.设CP=x,CQ=y,则下列图象中,能表示y与x的函数关系的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图1在平面直角坐标系中,A(-4,0),B(4,6),AB交y轴于点C,连结OB.
(1)求C点坐标;
(2)如图2,将线段AC平移至第四象限得到MN,C点对应点N(m,-12),延长NM交y轴于P,用m表示P点坐标;
(3)如图3,在y轴正半轴上有一点E(0,4),y轴负半轴上有一点动点F,连接AE、AF,在AE、AF处放置两面相交的平面镜L1、L2,平面镜L2的位置随着F点位置的改变而改变.是否存在点F使得任何射到平面镜L1、L2上的光线m经过平面镜L1、L2的两次反射后,入射光线m与反射光线n总是平行的?若存在,求出点F的坐标;若不存在,请说明理由.(说明:平面镜反射光线的规律是:入射光线和反射光线与平面镜所夹的角相等)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,点A、C的坐标分别为(3,0)、(0,2),分别过点A,C作x轴、y轴的垂线交于点B.
(1)直接写出点B的坐标;
(2)若过点C的直线CD交线段AB于点D,且把四边形OABC的面积分成1:3两部分,求点D的坐标;
(3)将(2)中的线段CD向下平移h个单位(h>0),得到对应线段C′D′,若C′D′将四边形OABC的周长分成相等的两部分,求h的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图,在平行四边形ABCD中,∠BCD=30°,BC=4,CD=3$\sqrt{3}$,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是5.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.-2的绝对值是(  )
A.2B.-2C.-$\frac{1}{2}$D.±2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.已知等腰三角形的两边长分别为5cm、2cm,则该等腰三角形的周长是12cm.

查看答案和解析>>

同步练习册答案