分析 利用等腰直角三角形的性质得∠AB=AC,∠BAC=90°,再根据旋转的性质得AP=AP′,∠PAP′=∠BAC=90°,则△APP′为等腰直角三角形,然后根据等腰直角三角形的性质求解.
解答 解:∵△ABC是等腰直角三角形,
∴∠AB=AC,∠BAC=90°,
∵△ABP绕点A逆时针旋转后,能与△ACP′重合,
∴AP=AP′,∠PAP′=∠BAC=90°,
∴△APP′为等腰直角三角形,
∴PP′=$\sqrt{2}$AP=3$\sqrt{2}$.
故答案为3$\sqrt{2}$.
点评 本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形的性质.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com