精英家教网 > 初中数学 > 题目详情

直线数学公式与x轴、y轴分别交于点A和点B,M是OB上的一点,若将△ABM沿AM折叠,点B恰好落在x轴上的点B′处,求直线AM的解析式.

解:令y=0得x=6,令x=0得y=8,
∴点A的坐标为:(6,0),点B坐标为:(0,8),
∵∠AOB=90°,
∴AB==10,
由折叠的性质,得:AB=AB′=10,
∴OB′=AB′-OA=10-6=4,
设MO=x,则MB=MB′=8-x,
在Rt△OMB′中,OM2+OB′2=B′M2
即x2+42=(8-x)2
解得:x=3,
∴M(0,3),
设直线AM的解析式为y=kx+b,代入A(6,0),M(0,3)得:

解得:
∴直线AM的解析式为:y=-x+3.
分析:由题意,可求得点A与B的坐标,由勾股定理,可求得AB的值,又由折叠的性质,可求得AB′与O′的长,BM=B′M,然后设MO=x,由在Rt△OMB′中,OM2+OB′2=B′M2
即可得方程,继而求得M的坐标,然后利用待定系数法即可求得答案.
点评:此题考查了折叠的性质、一次函数的性质、勾股定理以及待定系数法求一次函数的解析式.此题难度适中,注意掌握数形结合思想与方程思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,O是原点.点P(x,y)且x+y=8,点A的坐标为(6,0),设△OPA的面积为S.
(1)用含x的解析式表示S,写出x的取值范围.
(2)若点P在第一象限内,当点P所在的直线与X轴,Y轴分别相交于点B和C,且满足△BAP∽△CPO,求此时△OPA的面积.
(3)是否存在点P,使△OPA是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,直线与x轴、y轴分别交于A、B两点.
(1)将直线AB绕原点O沿逆时针方向旋转90°得到直线A1B1
请在《答题卡》所给的图中画出直线A1B1,此时直线AB与A1B1的位置关系为
 
(填“平行”或“垂直”);
(2)设(1)中的直线AB的函数表达式为y1=k1x+b1,直线A1B1的函数表达式为y2=k2x+b2,则k1•k2=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知反比例函数y=
k
x
(k≠0)
的图象经过点(
1
2
,8),直线y=-x+b经过该反比例函数图象上的点Q(4,m).
(1)求上述反比例函数和直线的函数表达式;
(2)设该直线与x轴、y轴分别相交于A、B两点,与反比例函数图象的另一个交点为P,连接0P、OQ,求△OPQ的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线与x轴、y轴分别交于A、B两点.
(1)将直线AB绕原点O沿逆时针方向旋转90°得到直线A1B1.请在《答题卡》所给的图中画出直线A1B1,此时直线AB与A1B1的位置关系为
垂直
垂直
(填“平行”或“垂直”)
(2)设(1)中的直线AB的函数表达式为y1=k1x+b1,直线A1B1的函数表达式为y2=k2x+b2,则k1•k2=
-1
-1

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知直线与x轴、y轴分别交于A、B两点,并且与反比例函数y=
mx
(m≠0)
的图象在第一象限交于C点,CD垂直于x轴,垂足是D,若OA=OB=OD=1;
(1)求:点A、B、C、D的坐标;
(2)求反比例函数的解析式;
(3)求△AOC的周长和面积.

查看答案和解析>>

同步练习册答案