精英家教网 > 初中数学 > 题目详情
观察如下等式:
1
1
=
1
2
+
1
2
1
2
=
1
3
+
1
6
1
3
=
1
4
+
1
12
1
4
=
1
5
+
1
20
,根据以上规律,得出
1
n
=
 
分析:观察分析可得
1
1
=
1
2
+
1
1×2
1
2
=
1
3
+
1
2×3
;…根据以上规律,得出
1
n
=
1
n+1
+
1
n(n+1)
解答:解:
1
n
=
1
n+1
+
1
n(n+1)
点评:本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

观察:
1
2
=
1
1×2
=
1
1
-
1
2
1
6
=
1
2×3
=
1
2
-
1
3
1
12
=
1
3×4
=
1
3
-
1
4
1
20
=
1
4×5
=
1
4
-
1
5
1
30
=
1
5×6
=
1
5
-
1
6
,…
(1)猜想:请你猜想出表示(1)中的特点的一般规律,用含x(x表示整数)的等式表示出来
 

(2)验证:
(3)运用:请利用上述规律,解方程
1
(x-4)(x-3)
+
1
(x-3)(x-2)
+
1
(x-2)(x-1)
+
1
(x-1)x
+
1
x(x+1)
=
1
x+1

解:原方程可变形如下:
(4)拓展:计算
1
1×3
+
1
3×5
+
1
5×7
+
…+
1
2009×2011

查看答案和解析>>

科目:初中数学 来源: 题型:

先观察下列等式,然后用你发现的规律解答下面问题
 
1
1×2
=1-
1
2
    
1
2×3
=
1
2
-
1
3
     
1
3×4
=
1
3
-
1
4

(1)填空 
1
1×2
+
1
2×3
+
1
3×4
+…+
1
9×10
=
9
10
9
10

(2)
1
1×2
+
1
2×3
+
1
3×4
+…+
1
(n-1)n

(3)如果将问题改为如下形式,你还会计算吗?
1
1×5
+
1
5×9
+
1
9×13

(4)解方程
x
1×5
+
x
5×9
+
x
9×13
+…+
x
2009×2013
=503.

查看答案和解析>>

同步练习册答案