分析 探究:欲证明DB=DC,只要证明△DFC≌△DEB即可.
应用:先证明△DFC≌△DEB,再证明△ADF≌△ADE,根据全等三角形的性质即可解决问题.
解答 探究:
证明:如图②中,DE⊥AB于E,DF⊥AC于F,
∵DA平分∠BAC,DE⊥AB,DF⊥AC,
∴DE=DF,
∵∠B+∠ACD=180°,∠ACD+∠FCD=180°,
∴∠B=∠FCD,
在△DFC和△DEB中,![]()
$\left\{\begin{array}{l}{∠F=∠DEB}\\{∠FCD=∠B}\\{DF=DE}\end{array}\right.$,
∴△DFC≌△DEB,
∴DC=DB.
应用:解;如图③连接AD、DE⊥AB于E,DF⊥AC于F,
∵∠B+∠ACD=180°,∠ACD+∠FCD=180°,
∴∠B=∠FCD,
在△DFC和△DEB中,
$\left\{\begin{array}{l}{∠F=∠DEB}\\{∠FCD=∠B}\\{DC=DB}\end{array}\right.$,![]()
∴△DFC≌△DEB,
∴DF=DE,CF=BE,
在Rt△ADF和Rt△ADE中,$\left\{\begin{array}{l}{AD=AD}\\{DE=DF}\end{array}\right.$,
∴△ADF≌△ADE,
∴AF=AE,
∴AB-AC=(AE+BE)-(AF-CF)=2BE,
∵BE=a,
∴AB-AC=2a.
点评 本题考查全等三角形的判定和性质、角平分线的性质、等腰直角三角形的性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,属于中考常考题型.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 5个 | B. | 4个 | C. | 3个 | D. | 2个 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 2.40×106 | B. | 2.4×105 | C. | 2.40×105 | D. | 2.4×103 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 5.75×103人 | B. | 5750×104人 | C. | 5.75×107人 | D. | 5.75×108人 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{5}{6}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com