精英家教网 > 初中数学 > 题目详情
15.如图,在△ABC中,AB=AC,∠DAC是△ABC的一个外角.
实验与操作:
根据要求进行尺规作图,并在图中标明相应字母(保留作图痕迹,不写作法)
(1)作∠DAC的平分线AM;
(2)作线段AC的垂直平分线,与AM交于点F,与BC边交于点E,连接AE,CF.
猜想并证明:
判断四边形AECF的形状并加以证明.

分析 先作以个角的交平分线,再作线段的垂直平分线得到几何图形,由AB=AC得∠ABC=∠ACB,由AM平分∠DAC得∠DAM=∠CAM,则利用三角形外角性质可得∠CAM=∠ACB,再根据线段垂直平分线的性质得OA=OC,∠AOF=∠COE,于是可证明△AOF≌△COE,所以OF=OE,然后根据菱形的判定方法易得四边形AECF的形状为菱形.

解答 解:如图所示,
四边形AECF的形状为菱形.理由如下:
∵AB=AC,
∴∠ABC=∠ACB,
∵AM平分∠DAC,
∴∠DAM=∠CAM,
而∠DAC=∠ABC+∠ACB,
∴∠CAM=∠ACB,
∴EF垂直平分AC,
∴OA=OC,∠AOF=∠COE,
在△AOF和△COE中
$\left\{\begin{array}{l}{∠FAO=∠ECO}\\{OA=OC}\\{∠AOF=∠COE}\end{array}\right.$,
∴△AOF≌△COE,
∴OF=OE,
即AC和EF互相垂直平分,
∴四边形AECF的形状为菱形.

点评 本题考查了复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了垂直平分线的性质和菱形的判定方法.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.据报道,参观某会展的人数达35.6万,用科学记数法表示数35.6万是(  )
A.3.56×101B.3.56×104C.3.56×105D.35.6×104

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.为鼓励居民节约用电,某市自2012年以来对家庭用电收费实行阶梯电价,即每月对每户居民的用电量分为三个档级收费,第一档为用电量在180千瓦时(含180千瓦时)以内的部分,执行基本价格;第二档为用电量在180千瓦时到450千瓦时(含450千瓦时)的部分,实行提高电价;第三档为用电量超出450千瓦时的部分,执行市场调节价格.该市一位同学家2015年2月份用电330千瓦时,电费为213元,3月份用电240千瓦时,电费为150元.如果该同学家4月份用电410千瓦时,那么电费为269元.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.下列数据是2015年4月5日10时公布的中国六大城市的空气污染指数情况:
城市天津合肥南京贵阳成都南昌
污染指数34216316545227163
则这组数据的中位数和众数分别是(  )
A.185和163B.164和163C.185和164D.163和164

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数y=$\frac{k}{x}$(k≠0,x>0)的图象过点B,E.若AB=2,则k的值为6+2$\sqrt{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,在平面直角坐标系中,抛物线y=ax2+bx+c与⊙M相交于A、B、C、D四点,其中A、B两点的坐标分别为(-1,0),(0,-2),点D在x轴上且AD为⊙M的直径.点E是⊙M与y轴的另一个交点,过劣弧$\widehat{ED}$上的点F作FH⊥AD于点H,且FH=1.5
(1)求点D的坐标及该抛物线的表达式;
(2)若点P是x轴上的一个动点,试求出△PEF的周长最小时点P的坐标;
(3)在抛物线的对称轴上是否存在点Q,使△QCM是等腰三角形?如果存在,请直接写出点Q的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,过原点的直线y=k1x和y=k2x与反比例函数y=$\frac{1}{x}$的图象分别交于两点A,C和B,D,连接AB,BC,CD,DA.
(1)四边形ABCD一定是平行四边形;(直接填写结果)
(2)四边形ABCD可能是矩形吗?若可能,试求此时k1,k2之间的关系式;若不能,说明理由;
(3)设P(x1,y1),Q(x2,y2)(x2>x1>0)是函数y=$\frac{1}{x}$图象上的任意两点,a=$\frac{{y}_{1}+{y}_{2}}{2}$,b=$\frac{2}{{x}_{1}+{x}_{2}}$,试判断a,b的大小关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.若用一张直径为20cm的半圆形铁片做一个圆锥的侧面,接缝忽略不计,则所得圆锥的高为(  )
A.5$\sqrt{3}$cmB.5$\sqrt{5}$cmC.$\frac{5\sqrt{15}}{2}$cmD.10cm

查看答案和解析>>

同步练习册答案