精英家教网 > 初中数学 > 题目详情
7.如图,在边长为3的正方形ABCD中,点E是BC边上的点,BE=1,∠AEP=90°,且EP交正方形外角的平分线CP于点P,交边CD于点F.
(1)求证:AE=EP;
(2)在AB边上是否存在点M,使得四边形DMEP是平行四边形?若存在,请给予证明;若不存在,请说明理由.

分析 (1)在AB上取BN=BE,连接EH,根据已知及正方形的性质利用ASA判定△AHE≌△ECP,从而得到AE=EP;
(2)先证△DAM≌△ABE,进而可得四边形DMEP是平行四边形.

解答 (1)证明:在AB上截取BN=B,如图1所示:
∵四边形ABCD为正方形,
∴AB=BC,∠B=90°.
∴AN=EC,∠1=∠2=45°.
∴∠4=135°.
∵CP为正方形ABCD的外角平分线,
∴∠PCE=135°.
∴∠PCE=∠4.
∵∠AEP=90°,
∴∠BEA+∠3=90°.
∵∠BAE+∠BEA=90°,
∴∠3=∠BAE.
∴△ANE≌△ECP.
∴AE=EP
(2)解:存在点M使得四边形DMEP是平行四边形.理由如下:
过点D作DM∥PE,交AE于点K,交AB于点M,连接ME、DP.
∴∠AKD=∠AEP=90°.
∵∠BAD=90°,
∴∠ADM+∠AMD=90°,∠MAK+∠AMD=90°.
∴∠ADM=∠MAK.
∵AD=AB,∠B=∠DAB,
∴△AMD≌△BEA.
∴DM=AE.
∴DM=EP.
∴四边形DMEP为平行四边形.

点评 此题主要考查了正方形的性质,全等三角形的判定与性质,以及平行四边形的判定,解决问题的关键是要熟练掌握正方形的性质及三角形相似的判定和性质,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.观察下面解题过程:
计算:1+3+5+…+91+93+95.
解:设S=1+3+5+…+91+93+95.…①
则S=95+93+91+…+5+3+1.…②
①+②得
2S=(1+3+5+…+91+93+95)+(95+93+91+…+5+3+1)
=(1+95)+(3+93)+(5+91)+…+(91+5)+(93+3)+(95+1)
=$\frac{(95+1)×48}{2}$
=2304.
(1)仿照上述方法计算:
2+4+6+…+100+102+104
(2)已知n是正整数,且n>10,计算:1+2+3+…+n=$\frac{n(n+1)}{2}$.(只填结果)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,在四边形ABCD中,∠B=90°,DE∥AB交BC于E、交AC于F,∠CDE=∠ACB=30°,BC=DE.求证:△FCD是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.根据题意列出方程组
(1)甲、乙两人在一环形场地上从点A同时同向匀速跑步,甲的速度是乙的速度的2.5倍,4min后两人首次相遇,此时乙还需要跑300m跑完第一圈.求甲、乙两人的速度及环形场地的周长.
(2)将若干只鸡放人若干笼中,若每个笼中放4只.则有一鸡无笼可放;若每个笼里放5只.则有一笼无鸡可放,问有多少只鸡,多少个笼?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知不等式5-3x≤1的最小整数解是关于x的方程(a+9)x=4(x+1)的解,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.化简:
$\frac{4}{\sqrt{2}+2}$+$\frac{4}{2+\sqrt{6}}$+$\frac{4}{\sqrt{6}+\sqrt{8}}$+…$\frac{4}{\sqrt{2n}+\sqrt{2n-2}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图,在△ABC中,∠C=90°,定义:斜边与∠A的邻边的比叫做∠A的正割,用“secA”表示,如设该直角三角形各边为a,b,c,则secA=$\frac{c}{b}$,则下列说法正确的是(  )
A.secB•sinA=1B.secB=$\frac{b}{c}$C.secA•cosB=1D.sec2A•sec2B=1

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.某校调查了20名同学某一周玩手机游戏的次数,调查结果如下表所示,那么这20名同学玩手机游戏次数的平均数为(  )
次数2458
人数22106
A.5B.5.5C.6D.6.5

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图①,正方形ABCD边长为1,将正方形ABCD绕点A逆时针旋转α度后得到正方形AB'C'D'(0°<α<90°),C'D'与直线CD相交于点E,C'B'与直线CD相交于点F.
问题发现:(1)试猜想∠EAF=45°;三角形EC'F的周长2.
问题探究:如图②,连接B'D'分别交AE,AF于P,Q两点.
(2)在旋转过程中,若D'P=a,QB'=b,试用a,b来表示PQ,并说明理由.
(3)在旋转过程中△APQ的面积是否存在最小值,若存在,请求出这个值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案