精英家教网 > 初中数学 > 题目详情
26、如图,点A为x轴负半轴上一点,点B为x轴正半轴上一点,OA,OB(OA?OB)的长分别是关于x的一元二次方程x2-4mx+m2+2=0的两根,C(0,3),且△ABC的面积为6,
(1)求∠ABC的度数;
(2)如图二,过点C作CD⊥AC交x轴于点D,求点D的坐标.
分析:(1)要求∠ABC的度数,需先求出OB的长;先利用△ABC的面积求出OA+OB的值进而求出m,得出方程式,进而求出OA、OB的值,从而求出∠ABC的度数;
(2)先设出D点的坐标,再根据D点坐标分表示出Rt△ACD的三条边,根据勾股定理列出方程,从而求出D点坐标.
解答:解:(1)∵C(0,3),
∴OC=3,
∵△ABC的面积为6,
∴AB=4,
∵OA、OB的长分别是关于x的一元二次方程x2-4mx+m2+2=0的两根,
∴OA+OB=4m=4
∴m=1
∴一元二次方程x2-4mx+m2+2=0可化为:x2-4x+3=0
解得:x1=1 x2=3
即OA=1,OB=3
在Rt△OBC中,OB=OC
∴∠ABC=45°;

(2)设D点坐标为(x,0)
在Rt△ACD中
AC2+CD2=AD2
即:(1-0)2+(0-3)2+(x-0)2+(0-3)2=(1+x)2
解得:x=9
即:D点坐标为(9,0).
点评:本题考查综合应用点的坐标,三角形的面积.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,点A为x轴负半轴上一点,点B为x轴正半轴上一点,OA,OB(OA<OB)的长分别是关精英家教网于x的一元二次方程x2-4mx+m2+2=0的两根,C(0,3),且S△ABC=6
(1)求∠ABC的度数;
(2)过点C作CD⊥AC交x轴于点D,求点D的坐标;
(3)在第(2)问的条件下,y轴上是否存在点P,使∠PBA=∠CAB?若存在,请直接写出直线PD的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2007年全国中考数学试题汇编《一次函数》(06)(解析版) 题型:解答题

(2007•黑龙江)如图,点A为x轴负半轴上一点,点B为x轴正半轴上一点,OA,OB(OA<OB)的长分别是关于x的一元二次方程x2-4mx+m2+2=0的两根,C(0,3),且S△ABC=6
(1)求∠ABC的度数;
(2)过点C作CD⊥AC交x轴于点D,求点D的坐标;
(3)在第(2)问的条件下,y轴上是否存在点P,使∠PBA=∠ACB?若存在,请直接写出直线PD的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年黑龙江省牡丹江市中考数学二模试卷(解析版) 题型:解答题

(2007•黑龙江)如图,点A为x轴负半轴上一点,点B为x轴正半轴上一点,OA,OB(OA<OB)的长分别是关于x的一元二次方程x2-4mx+m2+2=0的两根,C(0,3),且S△ABC=6
(1)求∠ABC的度数;
(2)过点C作CD⊥AC交x轴于点D,求点D的坐标;
(3)在第(2)问的条件下,y轴上是否存在点P,使∠PBA=∠ACB?若存在,请直接写出直线PD的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2007年黑龙江省中考数学试卷(解析版) 题型:解答题

(2007•黑龙江)如图,点A为x轴负半轴上一点,点B为x轴正半轴上一点,OA,OB(OA<OB)的长分别是关于x的一元二次方程x2-4mx+m2+2=0的两根,C(0,3),且S△ABC=6
(1)求∠ABC的度数;
(2)过点C作CD⊥AC交x轴于点D,求点D的坐标;
(3)在第(2)问的条件下,y轴上是否存在点P,使∠PBA=∠ACB?若存在,请直接写出直线PD的解析式;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案