精英家教网 > 初中数学 > 题目详情
(2000•兰州)如图,直线AB过x轴上的点A(2,0),且与抛物线y=ax2相交于B、C两点,已知点B的坐标是(1,1),
(1)求直线AB和抛物线所表示的函数解析式;
(2)如果在第一象限,抛物线上有一点D,使得S△OAD=S△OBC,求这时D点坐标.

【答案】分析:(1)将A、B两点坐标代入y=kx+b中,可求直线解析式,将B点坐标代入y=ax2中,可求抛物线解析式;
(2)联立直线与抛物线解析式,可求C点坐标,用S△OBC=S△OCA-S△OBA,可求△OAD的面积,又已知OA,可求D点的纵坐标.
解答:解:(1)设直线AB所表示的函数解析式为y=kx+b,
∵它过点A(2,0)和点B(1,1),

解得
∴直线AB所表示的函数解析式为y=-x+2,
∵抛物线y=ax2过点B(1,1),
∴a×12=1,
解得a=1,
∴抛物线所表示的函数解析式为y=x2

(2)解方程组

∴C点坐标为(-2,4);
又B点坐标为(1,1),A点坐标为(2,0),
∴OA=2,


∴S△OBC=S△OAC-S△OAB=4-1=3,
设D点的纵坐标为yD
则S△OAD=×OA×|yD|=×2×yD=3,
把y=3代入y=x2

又∵点D在第一象限,

∴D点坐标为(,3).
点评:本题考查了一次函数、二次函数解析式的求法,两个函数图象交点坐标的求法,以及坐标系中面积的表示方法.
练习册系列答案
相关习题

科目:初中数学 来源:2000年甘肃省兰州市中考数学试卷(解析版) 题型:解答题

(2000•兰州)如图,直线AB过x轴上的点A(2,0),且与抛物线y=ax2相交于B、C两点,已知点B的坐标是(1,1),
(1)求直线AB和抛物线所表示的函数解析式;
(2)如果在第一象限,抛物线上有一点D,使得S△OAD=S△OBC,求这时D点坐标.

查看答案和解析>>

科目:初中数学 来源:2000年全国中考数学试题汇编《锐角三角函数》(02)(解析版) 题型:解答题

(2000•兰州)如图,已知半圆O,交AB于D、AC于E,BC是直径,若∠A=60°,AB=16,AC=10,求AD、AE、DE的长.

查看答案和解析>>

科目:初中数学 来源:2000年全国中考数学试题汇编《图形的相似》(02)(解析版) 题型:解答题

(2000•兰州)如图,已知半圆O,交AB于D、AC于E,BC是直径,若∠A=60°,AB=16,AC=10,求AD、AE、DE的长.

查看答案和解析>>

科目:初中数学 来源:2000年全国中考数学试题汇编《圆》(06)(解析版) 题型:解答题

(2000•兰州)如图,已知AB为半⊙O的直径,直线MN与⊙O相切于C点,AE⊥MN于E,BF⊥MN于F.
求证:(1)AE+BF=AB;(2)EF2=4AE•BF.

查看答案和解析>>

同步练习册答案