精英家教网 > 初中数学 > 题目详情
已知△ABC为等边三角形,点M是射线BC上任意一点,点N是射线CA上一点,且BM=CN,直线BN与AM相交与点Q.
(1)说明△BCN≌△ABM;
(2)求∠BQM的度数.
分析:(1)根据等边三角形性质得出AB=AC,∠ABM=∠BCN,根据SAS推出两三角形全等即可;
(2)根据三角形全等得出∠M=∠N,根据求出∠M+∠CAM=∠ACB=60°,推出∠N+∠NAQ=60°,即可得出答案.
解答:(1)解:∵△ABC是等边三角形,
∴AB=AC,∠ABM=∠BCN,

在△BCN和△ABM中

BC=AB
∠BCN=∠ABM
CN=BM

∴△BCN≌△ABM(SAS);


(2)解:∵△BCN≌△ABM,
∴∠M=∠N,
∵△ABC是等边三角形,
∴∠ACB=60°,
∴∠M+∠CAM=∠ACB=60°,
∵∠M=∠N,∠CAM=∠NAQ,
∴∠N+∠NAQ=60°,
∴∠BQM=∠N+∠NAQ=60°.
点评:本题考查了等边三角形性质,全等三角形的性质和判定,三角形的外角性质的应用,主要考查学生的推理能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知△ABC是等边三角形,⊙O为它的外接圆,点P是
BC
上任一点.
(1)图中与∠PBC相等的角为
 

(2)试猜想出三条线段PA、PB、PC之间的数量关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

三角形外心我们可以理解为:到三角形三个顶点距离相等的点称三角形的外心,由此,我们定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.
举例:如图1,若PA=PB,则点P为△ABC的准外心.
(1)应用:如图2,CD为等边三角形ABC的高,准外心P在高CD上,且PD=
12
AB,求∠APB的度数.
(2)探究:已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探究PA的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知D是等边△ABC外一点,∠BDC=120°,则AD、BD、DC三条线段的数量关系为
AD=BD+DC
AD=BD+DC

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知△ABC是等边三角形,⊙O为它的外接圆,点P是数学公式上任一点.
(1)图中与∠PBC相等的角为______;
(2)试猜想出三条线段PA、PB、PC之间的数量关系,并证明.

查看答案和解析>>

科目:初中数学 来源:2009年广东省广州市花都区中考数学二模试卷(解析版) 题型:解答题

(2009•花都区二模)已知△ABC是等边三角形,⊙O为它的外接圆,点P是上任一点.
(1)图中与∠PBC相等的角为______;
(2)试猜想出三条线段PA、PB、PC之间的数量关系,并证明.

查看答案和解析>>

同步练习册答案