精英家教网 > 初中数学 > 题目详情
.(6分) 已知二次函数的图象与y轴交于点A(0,-6),与x轴的一个交点坐标是B(-2,0).
(1)求二次函数的关系式,并写出顶点坐标;
(2)将二次函数图象沿x轴向左平移个单位长度,求所得图象对应的函数关系式.
解:(1)把A(O,-6)代入y=x2+bx+c求得 ···························································(1分)
把B(-2,0)代入y=x2+bx-6求得 ··························································(2分)
所以················································································(3分)
所以顶点坐标 ····························································································(4分)
(2)二次函数图象沿x轴向左平移个单位长度得: ··············(6分)解析:
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(本小题满分10分)已知二次函数

(1)当时,函数值的增大而减小,求的取值范围。

(2)以抛物线的顶点为一个顶点作该抛物线的内接正三角形两点在抛物线上),请问:△的面积是与无关的定值吗?若是,请求出这个定值;若不是,请说明理由。

(3)若抛物线轴交点的横坐标均为整数,求整数的值。

 

查看答案和解析>>

科目:初中数学 来源: 题型:

(本小题满分10分)已知二次函数
(1)当时,函数值的增大而减小,求的取值范围。
(2)以抛物线的顶点为一个顶点作该抛物线的内接正三角形两点在抛物线上),请问:△的面积是与无关的定值吗?若是,请求出这个定值;若不是,请说明理由。
(3)若抛物线轴交点的横坐标均为整数,求整数的值。

查看答案和解析>>

科目:初中数学 来源:2012届浙江省新昌县实验中学九年级上学期期中阶段性测试数学卷 题型:解答题

(本题12分)已知二次函数的图象经过点(0,-3),且顶点坐标为(-1,-4).
(1)求该二次函数的解析式;
(2)设该二次函数的图象与x轴的交点为A、B,与y轴的交点为C,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源:2013届浙江建德李家镇初级中学九年级上学期期末考试数学试卷(带解析) 题型:解答题

(本题8分)已知二次函数
(1)求函数图象的顶点坐标、对称轴及与坐标轴交点的坐标;
(2)并画出函数的大致图象,并求使y>0的x的取值范围。

查看答案和解析>>

科目:初中数学 来源:2011年初中毕业升学考试(广西钦州卷)数学 题型:解答题

(本题满分10分)已知二次函数的图象与x轴分别交于点A、B,与y轴交于点C.点D是抛物线的顶点.

    (1)如图①,连接AC,将△OAC沿直线AC翻折,若点O的对应点O'恰好落在该抛物

线的对称轴上,求实数a的值;

    (2)如图②,在正方形EFGH中,点E、F的坐标分别是(4,4)、(4,3),边HG位于

边EF的右侧.小林同学经过探索后发现了一个正确的命题:“若点P是边EH或边HG上的

任意一点,则四条线段PA、PB、PC、PD不能与任何一个平行四边形的四条边对应相等(即

这四条线段不能构成平行四边形).”若点P是边EF或边FG上的任意一点,刚才的结论是

否也成立?请你积极探索,并写出探索过程;

    (3)如图②,当点P在抛物线对称轴上时,设点P的纵坐标t是大于3的常数,试问:是

否存在一个正数a,使得四条线段PA、PB、PC、PD与一个平行四边形的四条边对应相等

(即这四条线段能构成平行四边形)?请说明理由.

 

查看答案和解析>>

同步练习册答案