科目:初中数学 来源: 题型:
(本小题满分10分)已知二次函数![]()
(1)当
时,函数值
随
的增大而减小,求
的取值范围。
(2)以抛物线
的顶点
为一个顶点作该抛物线的内接正三角形
(
,
两点在抛物线上),请问:△
的面积是与
无关的定值吗?若是,请求出这个定值;若不是,请说明理由。
(3)若抛物线
与
轴交点的横坐标均为整数,求整数
的值。
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源:2012届浙江省新昌县实验中学九年级上学期期中阶段性测试数学卷 题型:解答题
(本题12分)已知二次函数的图象经过点(0,-3),且顶点坐标为(-1,-4).
(1)求该二次函数的解析式;
(2)设该二次函数的图象与x轴的交点为A、B,与y轴的交点为C,求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源:2013届浙江建德李家镇初级中学九年级上学期期末考试数学试卷(带解析) 题型:解答题
(本题8分)已知二次函数
。
(1)求函数图象的顶点坐标、对称轴及与坐标轴交点的坐标;
(2)并画出函数的大致图象,并求使y>0的x的取值范围。
查看答案和解析>>
科目:初中数学 来源:2011年初中毕业升学考试(广西钦州卷)数学 题型:解答题
(本题满分10分)已知二次函数
的图象与x轴分别交于点A、B,与y轴交于点C.点D是抛物线的顶点.
(1)如图①,连接AC,将△OAC沿直线AC翻折,若点O的对应点O'恰好落在该抛物
线的对称轴上,求实数a的值;
(2)如图②,在正方形EFGH中,点E、F的坐标分别是(4,4)、(4,3),边HG位于
边EF的右侧.小林同学经过探索后发现了一个正确的命题:“若点P是边EH或边HG上的
任意一点,则四条线段PA、PB、PC、PD不能与任何一个平行四边形的四条边对应相等(即
这四条线段不能构成平行四边形).”若点P是边EF或边FG上的任意一点,刚才的结论是
否也成立?请你积极探索,并写出探索过程;
(3)如图②,当点P在抛物线对称轴上时,设点P的纵坐标t是大于3的常数,试问:是
否存在一个正数a,使得四条线段PA、PB、PC、PD与一个平行四边形的四条边对应相等
(即这四条线段能构成平行四边形)?请说明理由.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com