精英家教网 > 初中数学 > 题目详情
精英家教网如图,在矩形ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,点P在矩形ABCD内,若AB=4,BC=6,AE=CG=3,BF=DH=4,四边形AEPH的面积为5,求四边形PFCG的面积.
分析:先连接AP,CP.把该四边形分解为三角形进行解答.设△AHP在AH边上的高为x,△AEP在AE边上的高为y.得出AH=CF,AE=CG.然后得出S四边形AEPH=S△AHP+S△AEP.根据题意可求解.
解答:精英家教网解:解法一、
连接AP,CP,设△AHP在AH边上的高为x,△AEP在AE边上的高为y.
则△CFP在CF边上的高为4-x,△CGP在CG边上的高为6-y.
∵AH=CF=2,AE=CG=3,
∴S四边形AEPH=S△AHP+S△AEP
=
1
2
AH×x+
1
2
AE×y,
=
1
2
×2x+
1
2
×3y=5,即2x+3y=10,
S四边形PFCG=S△CGP+S△CFP=CF×(4-x)×
1
2
+CG×(6-y)×
1
2

=2(4-x)×
1
2
+3(6-y)×
1
2

=(26-2x-3y)×
1
2

=(26-10)×
1
2

=8.
解法二、连接HE、EF、FG、GH,证△DHG≌△BFE,精英家教网
推出HG=EF,
同理:HE=GF,
则四边形EFGH由条件知是平行四边形,面积为4×6-
1
2
×3×2-
1
2
×3×2-
1
2
×4×1-
1
2
×4×1=14,
由平行四边形性质知:S△HEP+S△FGP=
1
2
S平行四边形EFGH=7,
∵△AEH的面积为
1
2
×3×2=3,△CGF的面积为
1
2
×3×2=3,
四边形AEPH的面积为5,
∴△HEP的面积是5-3=2,
△PGF的面积是7-2=5,
∴四边形PFCG的面积S=S△PGF+S△CGF=5+3=8.
答:四边形PFCG的面积是8.
点评:本题考查了对矩形的性质,三角形的面积等知识点,把四边形的面积分解为三角形的面积来求解是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在矩形ABCD中,AB=4cm,BC=8cm,点P从点A出发以1cm/s的速度向点B运动,点Q从点B出发以2cm/s的速度向点C运动,设经过的时间为xs,△PBQ的面积为ycm2,则下列图象能反映y与x之间的函数关系的是(  )
A、精英家教网B、精英家教网C、精英家教网D、精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的⊙O与AD、AC分别交于点E、F,且∠ACB=∠DCE精英家教网
(1)判断直线CE与⊙O的位置关系,并说明理由;
(2)若AB=
2
,BC=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,在矩形 ABCD中,AB=30cm,BC=60cm.点P从点A出发,沿A→B→C→D路线向点D匀速运动,到达点D后停止;点Q从点D出发,沿 D→C→B→A路线向点A匀速运动,到达点A后停止.若点P、Q同时出发,在运动过程中,Q点停留了1s,图②是P、Q两点在折线AB-BC-CD上相距的路程S(cm)与时间t(s)之间的函数关系图象.
(1)请解释图中点H的实际意义?
(2)求P、Q两点的运动速度;
(3)将图②补充完整;
(4)当时间t为何值时,△PCQ为等腰三角形?请直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AB=6,则AD=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,AB=4,BC=6,E为线段BC上的动点(不与B、C重合).连接DE,作EF⊥DE,EF与AB交于点F,设CE=x,BF=y.
(1)求y与x的函数关系式;
(2)x为何值时,y的值最大,最大值是多少?
(3)若设线段AB的长为m,上述其它条件不变,m为何值时,函数y的最大值等于3?

查看答案和解析>>

同步练习册答案