精英家教网 > 初中数学 > 题目详情
(2012•岱岳区二模)某公园有一个抛物线形状的观景拱桥ABC,其横截面如图所示,在图中建立的直角坐标系中,抛物线的解析式为y=-+c且过顶点C(0,5)(长度单位:m)
(1)直接写出c的值;
(2)现因搞庆典活动,计划沿拱桥的台阶表面铺设一条宽度为1.5m的地毯,地毯的价格为20元/m2,求购买地毯需多少元?
(3)在拱桥加固维修时,搭建的“脚手架”为矩形EFGH(H、G分别在抛物线的左右侧上),并铺设斜面EG.已知矩形EFGH的周长为27.5m,求斜面EG的倾斜角∠GEF的度数.(精确到0.1°)

【答案】分析:(1)根据点在抛物线上易求得c;
(2)根据解析式求出A,B,C三点坐标,求出地毯的总长度,再根据地毯的价格求出购买地毯需要的钱;
(3)由已知矩形EFGH的周长,求出GF,EF边的长度,再根据三角函数性质求出倾斜角∠GEF的度数.
解答:解:(1)抛物线的解析式为y=-+c,
∵点(0,5)在抛物线上
∴c=5;

(2)由(1)知,OC=5,
令y=0,即-+5=0,解得x1=10,x2=-10;
∴地毯的总长度为:AB+2OC=20+2×5=30,
∴30×1.5×20=900
答:购买地毯需要900元.

(3)可设G的坐标为(m,-+5)其中m>0
则EF=2m,GF=-+5,
由已知得:2(EF+GF)=27.5,
即2(2m-+5)=27.5,
解得:m1=5,m2=35(不合题意,舍去),
把m1=5代入,-+5=-×52+5=3.75,
∴点G的坐标是(5,3.75),
∴EF=10,GF=3.75,
在Rt△EFG中,tan∠GEF===0.375,
∴∠GEF≈20.6°.
点评:此题考查二次函数和三角函数的性质及其应用,要结合图形做题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•岱岳区二模)半径为2的⊙O与正方形ABCD相切于点P、Q,弦MN=2
3
,且MN在正方形的对角线BD上,则正方形的边长为
4+
2
或4-
2
4+
2
或4-
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•岱岳区二模)已知,如图,平行四边形ABCD中,AB⊥AC,AB=1,BC=
5
,对角线AC,BD交于O点,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.
(1)求证:当旋转角为90°时,四边形ABEF是平行四边形;
(2)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如能,说明理由并求出此时AC绕点O顺时针旋转的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•岱岳区二模)2011年11月份,鹿城区环境检测中心的关于“水心菜篮子”某一周空气质量报告中某项污染指数的数据如表所示,这组数据的众数是(  )
检测时间 周一 周二 周三 周四 周五 周六 周日
污染指数 21 22 21 24 20 22 21

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•岱岳区二模)四个全等的直角三角形围成一个大正方形,中间空出的部分是一个小正方形,这样就组成了一个“赵爽弦图”(如图).如果小正方形面积为4,大正方形面积为74,直角三角形中较小的锐角为θ,那么cosθ的值是
7
74
74
7
74
74

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•岱岳区二模)某超市第一次用3000元从生产基地购进某品种水果,很快售完,第二次又用2400元购进相同品种的水果,第二次购进水果每千克的进价是第一次的1.2倍,且重量比第一次少了20千克.
(1)求两次购进水果每千克的进价分别是多少元?
(2)在这两次购进水果的运输过程中,总重量损失10%,若这两次水果的售价相同,全部售完后超市至少要获得20%的总利润,则该水果的售价最低应定为每千克多少元?(结果保留整数).

查看答案和解析>>

同步练习册答案