精英家教网 > 初中数学 > 题目详情

若抛物线y=ax2过(-1,3),则a的值是________,对称轴是________,开口________,顶点坐标是________.

a=3    y轴    向上    (0,0)
分析:根据抛物线的性质解题即可.
解答:∵抛物线y=ax2过(-1,3),
∴a=3,对称轴是y轴,a=3>0,抛物线开口向上,顶点是原点(0,0).
点评:本题考查了抛物线y=ax2的性质:①图象是一条抛物线;②开口方向与a有关;③对称轴是y轴;④顶点(0,0).
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知,在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2.若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内.将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.
(1)求点C的坐标;
(2)若抛物线y=ax2+bx(a≠0)经过C、A两点,求此抛物线的解析式;
(3)若抛物线的对称轴与OB交于点D,点P为线段DB上一点,过P作y轴的平行线,交抛物线于点M精英家教网.问:是否存在这样的点P,使得四边形CDPM为等腰梯形?若存在,请求出此时点P的坐标;若不存在,请说明理由.
注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(-
b
2a
4ac-b2
4a
)
,对称轴公式为x=-
b
2a

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,平面直角坐标系中有一矩形ABCO(O为原点),点A、C分别在x轴、y轴上,且C点坐标为(0,6);将BCD沿BD折叠(D点在OC边上),使C点落在OA边的E点上,并将BAE沿BE折叠,恰好使点A落在BD的点F上.
(1)直接写出∠ABE、∠CBD的度数,并求折痕BD所在直线的函数解析式;
(2)过F点作FG⊥x轴,垂足为G,FG的中点为H,若抛物线y=ax2+bx+c经过B、H、D三点,求抛物线的函数解析式;
(3)若点P是矩形内部的点,且点P在(2)中的抛物线上运动(不含B、D点),过点P作PN⊥BC分别交BC和BD于点N、M,设h=PM-MN,试求出h与P点横坐标x的函数解析式,并画出该函数的简图,分别写出使PM<NM、PM=MN、PM>MN成立的x的取值范围.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

13、若抛物线y=ax2过(-1,3),则a的值是
a=3
,对称轴是
y轴
,开口
向上
,顶点坐标是
(0,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:直线y=-
23
x+4m(常数m>0)交x轴于A点、交y轴于B点,四边形AOBC是以OA、OB为边的梯形,OA∥BC.将梯形AOBC逆时针旋转90°到A1OB1C1,连接B1C交y轴于D.(如图)
(1)请指出A1、B1的坐标.(用含m的代数式表示)
(2)当A1DB1C1为平行四边形时,求C点的坐标.(用含m的代数式表示)
(3)若抛物线y=ax2+bx+c在(2)的条件下过A、B、C三点且与线段B1C另一交点为E,连接A1E,求:S△A1DE:S四边形AOBC的值.

查看答案和解析>>

同步练习册答案