精英家教网 > 初中数学 > 题目详情
18.在一个不透明的盒子里装有8个白球,若干个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球是白球的概率是$\frac{1}{3}$,则黄球的个数为16.

分析 首先设黄球的个数为x个,根据题意,利用概率公式即可得方程,解此方程即可求得答案.

解答 解:设黄球的个数为x个,
根据题意得:$\frac{8}{x+8}$=$\frac{1}{3}$,
解得:x=16,
所以黄球的个数为16,
故答案为:16.

点评 此题考查了概率公式的应用.此题难度不大,注意掌握方程思想的应用,注意概率=所求情况数与总情况数之比.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

8.如图,已知∠A=∠AGE,∠D=∠DGC.
(1)求证:AB∥CD;
(2)若∠2+∠1=180°,且∠BEC=2∠B+30°,求∠C的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD向点D匀速运动,速度为4cm/s,过点P作PQ⊥BD交BC于点Q,以PQ为一边作正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC向点C匀速运动,速度为3cm/s,以O为圆心,0.8cm为半径作⊙O,点P与点O同时出发,设它们的运动时间为t(单位:s)(0<t<$\frac{8}{5}$).
(1)如图1,连接DQ平分∠BDC时,t的值为1s;
(2)如图2,连接CM,若△CMQ是以CQ为底的等腰三角形,求t的值;
(3)在运动过程中,当⊙O与直线MN在正方形MNPQ外部相切时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.计算:
(1)$\frac{x}{x+1}$+$\frac{x+2}{x+1}$;
(2)$\frac{2x}{x+1}$-$\frac{2x+6}{{x}^{2}-1}$÷$\frac{x+3}{{x}^{2}-2x+1}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.观察、思考、解答:
($\sqrt{2}$-1)2=($\sqrt{2}$)2-2×1×$\sqrt{2}$+12=2-2$\sqrt{2}$+1=3-2$\sqrt{2}$
反之3-2$\sqrt{2}$=2-2$\sqrt{2}$+1=($\sqrt{2}$-1)2
∴3-2$\sqrt{2}$=($\sqrt{2}$-1)2
∴$\sqrt{3-2\sqrt{2}}$=$\sqrt{2}$-1
(1)仿上例,化简:$\sqrt{6-2\sqrt{5}}$;
(2)若$\sqrt{a+2\sqrt{b}}$=$\sqrt{m}$+$\sqrt{n}$,则m、n与a、b的关系是什么?并说明理由;
(3)已知x=$\sqrt{4-\sqrt{12}}$,求($\frac{1}{x-2}$+$\frac{1}{x+2}$)•$\frac{{x}^{2}-4}{2(x-1)}$的值(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.若分式$\frac{{x}^{2}-4}{x-2}$=0,则x的值是(  )
A.±2B.2C.-2D.0

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,点C是线段AB的中点,过点C作CD⊥AB,且CD=AB=8,点P是线段AB上一动点(不包括端点A,B),点Q是线段CD上的动点,CQ=2PC,过点P作PM⊥AD于M点,点N是点A关于直线PM的对称点,连结NQ,设AP=x.
(1)则AD=4$\sqrt{5}$,AM=$\frac{\sqrt{5}}{5}$x(AM用含x的代数式表示);
(2)当点P在线段AC上时,请说明∠MPQ=90°的理由;
(3)若以NQ为直径作⊙O,在点P的整个运动过程中,
①当⊙O与线段CD相切时,求x的值;
②连结PN交⊙O于I,若NI=1时,请直接写出所有x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,在平面直角坐标系中,?ABCD的一边BC在x轴上,OC=2,点D的坐标为(-3,3),BC=4.
(1)求点A的坐标;
(2)若一条过点(0,2)的直线将?ABCD分割成周长相等的两部分,求出这条直线的函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.等腰三角形的对称轴是(  )所在的直线.
A.顶角的平分线B.底边上的高C.底边上的中线D.以上都是

查看答案和解析>>

同步练习册答案