精英家教网 > 初中数学 > 题目详情

在直线为常数)上有两点,若,则的大小关系是(    )

A.B.C.D.无法确定

A

解析试题分析:∵直线的k=-2<0,∴y随x的增大而减小,∴当x1<x2时,y1>y2.故选A.
考点:一次函数的性质.
点评:解答此题要熟知一次函数y=kx+b:①当k>0时,y随x的增大而增大;②当k<0时,y随x的增大而减小.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

使得函数值为零的自变量的值称为函数的零点.例如,对于函数y=x-1,令y=0,可得x=1,我们就说1是函数y=x-1的零点.
己知函数y=x2-2mx-2(m+3)(m为常数).
(1)当m=0时,求该函数的零点;
(2)证明:无论m取何值,该函数总有两个零点;
(3)设函数的两个零点分别为x1和x2,且
1
x1
+
1
x2
=-
1
4
,此时函数图象与x轴的交点分别为A、B(点A在点B左侧),点M在直线y=x-10上,当MA+MB最小时,求直线AM的函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:直线l的解析式为y=
m
8
x+m(m为常数,m≠0),点(-4,3)在直线l上.
(1)求m的值;
(2)若⊙A的圆心为原点,半径为R,并且⊙A与直线l有公共点,试求R的取值范围;
(3)当(2)中的⊙A与l有唯一公共点时,将此时的⊙A向左移动(圆心始终保持在x轴上),试求在这个移动过程中,当直线l被⊙A截得的弦的长为
8
5
11
时圆心A的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:抛物线y=-x2+2mx-4m-m2(m是常数)与x轴有两个交点.
(1)当m取最大整数时,求出此抛物线的解析式;
(2)设(1)中所求抛物线顶点为C,抛物线的对称轴与x轴交于点B,直线y=-x+3与x轴交于点A.点P为抛物线对称轴上一动点,过点P作PD⊥AC,垂足D在直线AC上.若S△PAD=
14
S△ABC,求出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图(1),直线y=kx-k2(k为常数,且k>0)与y轴交于点C,与抛物线y=ax2有唯一公共点B,点B在x轴上的正投影为点E,已知点D(0,4).
(1)求抛物线的解析式;
(2)是否存在实数k,使经过D,O,E三点的圆与抛物线的交点恰好为B?若存在,请求出时k的值;若不存在,请说明理由.
(3)如图(2),连接CE,已知点F(0,1),直线FA与CE相交于点M,不论k取何值,在①∠EAM=∠ECA,②∠EAM=∠ACF两个等式中有一个恒成立.请判断哪一个恒成立,并证明这个成立的结论.

查看答案和解析>>

同步练习册答案