精英家教网 > 初中数学 > 题目详情
精英家教网如图,点D、E分别在△ABC的边AC和BC上,∠C=90°,DE∥AB,且3DE=2AB,AE=13,BD=9,那么AB的长为
 
分析:先设DE=2x,CD=2y,CE=2z,由于DE∥AB,3DE=2AB,根据平行线分线段成比例定理,可得AB=3x,AC=3y,BC=3z,而∠C=90°,利用勾股定理,可得y2+z2=x2①,(3y)2+(2z)2=132②,(2y)2+(3z)2=92③,解关于①②③的方程,可求x,从而可求AB.
解答:解:设DE=2x,CD=2y,CE=2z,
∵DE∥AB,3DE=2AB,
∴AB=3x,AC=3y,BC=3z,
又∵∠C=90°,
∴(2y)2+(2z)2=(2x)2
即y2+z2=x2,①
同理(3y)2+(2z)2=132,②
(2y)2+(3z)2=92,③
②-①×4,得
5y2=169-4x2,④
①×9-③,得
5y2=9x2-81,⑤
⑤-④,得
x2=
250
13

x=
5
130
13

∴AB=3x=
15
13
130

故答案为:
15
13
130
点评:本题考查了平行线分线段成比例定理、勾股定理、解方程的有关知识.注意要巧妙的设,可使问题简化.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,点D、E分别在△ABC的边上AB、AC上,且∠AED=∠ABC,若DE=3,BC=6,AB=8,则AE的长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,点A,B分别在一次函数y=x,y=8x的图象上,其横坐标分别为a,b (a>0,b>0 ).若直线AB为一次函数y=kx+m的图象,则当
b
a
是整数时,满足条件的整数k的值共有(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:初中数学 来源: 题型:

19、如图,点M、N分别在正三角形ABC的BC、CA边上,且BM=CN,AM、BN交于点Q,求∠AQN的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

12、如图,点D、E分别在∠BAC的边上,连接DC、BE,若∠B=∠C,那么补充下列一个条件后,仍无法判定△ABE≌△ACD的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点A、B分别在直线l1、l2上,过点A作到l2的距离AM,过点B作直线l3∥l1

查看答案和解析>>

同步练习册答案