£¨2013•¶¨º£ÇøÄ£Ä⣩ÉèÒ»´Îº¯Êýy=k1x+b1£¨k1¡Ù0£©£¬y=k2x+b2£¨k2¡Ù0£©£¬Ôò³Æº¯Êýy=
k1+k2
2
x+
b1+b2
2
Ϊ´ËÁ½¸öº¯ÊýµÄƽ¾ùº¯Êý£®
£¨1£©ÈôÒ»´Îº¯Êýy=ax+1£¬y=-4x+3µÄƽ¾ùº¯ÊýΪy=3x+2£¬ÇóaµÄÖµ£»
£¨2£©ÈôÓÉÒ»´Îº¯Êýy=x+1£¬y=kx+1µÄͼÏóÓëxÖáΧ³ÉµÄÈý½ÇÐÎÃæ»ýΪ1£¬ÇóÕâÁ½¸öº¯ÊýµÄƽ¾ùº¯Êý£®
·ÖÎö£º£¨1£©¸ù¾Ýж¨ÒåµÃµ½
a+(-4)
2
=3
£¬È»ºó½â·½³Ì£»
£¨2£©Ïȸù¾ÝÈý½ÇÐÎÃæ»ý¹«Ê½Çó³ökµÄÖµ£¬È»ºó¸ù¾Ýж¨ÒåÇó½â£®
½â´ð£º½â£º£¨1£©¸ù¾ÝÌâÒâµÃ
a+(-4)
2
=3
£¬½âµÃa=10£»
£¨2£©Èçͼ£¬Ö±Ïßy=x+1Óë×ø±êÖá½»ÓÚ£¨0£¬1£©£¬£¨-1£¬0£©£¬¶øÖ±Ïßy=k x+1¾­¹ýµã£¨0£¬1£©£¬½»xÖáÓڵ㣨-
1
k
£¬0£©£©£¬
¡à
1
2
|-1+
1
k
|¡Á1=1£¬½âµÃk=
1
3
»ò-1£¬
¡àÁ½¸öº¯ÊýµÄƽ¾ùº¯ÊýΪy=
2
3
x+1»òy=1£®
µãÆÀ£º±¾Ì⿼²éÁËÒ»´Îº¯ÊýͼÏóµÄÐÔÖÊ£ºÒ»´Îº¯Êýy=kx+b£¨k¡¢bΪ³£Êý£¬k¡Ù0£©ÊÇÒ»ÌõÖ±Ïߣ¬µ±k£¾0£¬Í¼Ïó¾­¹ýµÚÒ»¡¢ÈýÏóÏÞ£¬yËæxµÄÔö´ó¶øÔö´ó£»µ±k£¼0£¬Í¼Ïó¾­¹ýµÚ¶þ¡¢ËÄÏóÏÞ£¬yËæxµÄÔö´ó¶ø¼õС£»Í¼ÏóÓëyÖáµÄ½»µã×ø±êΪ£¨0£¬b£©£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•¶¨º£ÇøÄ£Ä⣩һ´ÎÊýѧ²âÊÔºó£¬Ëæ»ú³éÈ¡6ÃûѧÉú³É¼¨ÈçÏ£º86£¬85£¬88£¬80£¬88£¬95£¬¹ØÓÚÕâ×éÊý¾Ý˵·¨´íÎóµÄÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•¶¨º£ÇøÄ£Ä⣩Çó´úÊýʽµÄÖµ£º
x2-2x
x2-4
¡Â
2x
x+2
+(x+2)
£¬ÆäÖÐx=
1
2
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•¶¨º£ÇøÄ£Ä⣩2012Äê10Ôº¼ÖݵØÌú1ºÅÏß½«Òª¿ªÍ¨ÔËÐУ¬ËïÑàÔÚ¡°°Ù¶È¡±ËÑË÷ÒýÇæÖÐÊäÈë¡°º¼ÖݵØÌú¡±£¬ÄÜËÑË÷µ½ÓëÖ®Ïà¹ØµÄ½á¹û¸öÊýԼΪ2770000£¬Õâ¸öÊýÓÿÆÑ§¼ÇÊý·¨±íʾΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•¶¨º£ÇøÄ£Ä⣩Èçͼ£¬ÒÑÖª¡÷ABCÖУ¬¡ÏCAB=¡ÏB=30¡ã£¬AB=2
3
£¬µãDÔÚBC±ßÉÏ£¬°Ñ¡÷ABCÑØAD·­ÕÛ£¬Ê¹ABÓëACÖØºÏ£¬µÃ¡÷AED£¬ÔòBDµÄ³¤¶ÈΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•¶¨º£ÇøÄ£Ä⣩Èçͼ£¬ÒÑÖªRt¡÷ABCÖУ¬AC=b£¬BC=a£¬D1ÊÇб±ßABµÄÖе㣬¹ýD1×÷D1E1¡ÍACÓÚE1£¬Á¬½áBE1½»CD1ÓÚD2£»¹ýD2×÷D2E2¡ÍACÓÚE2£¬Á¬½áBE2½»CD1ÓÚD3£»¹ýD3×÷D3E3¡ÍACÓÚE3£¬¡­£¬Èç´Ë¼ÌÐø£¬¿ÉÒÔÒÀ´ÎµÃµ½µãD4£¬D5£¬¡­£¬Dn£¬·Ö±ð¼Ç¡÷BD1E1£¬¡÷BD2E2£¬¡÷BD3E3£¬¡­£¬¡÷BDnEnµÄÃæ»ýΪS1£¬S2£¬S3£¬¡­Sn£®ÔòSnΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸