精英家教网 > 初中数学 > 题目详情
某数学兴趣小组开展了一次活动,过程如下:
设∠BAC=θ(0°<θ<90°).现把小棒依次摆放在两射线之间,并使小棒两端分别落在射线AB,AC上.
活动一:
如图甲所示,从点A1开始,依次向右摆放小棒,使小棒与小棒在端点处互相垂直,A1A2为第1根小棒.
数学思考:
(1)小棒能无限摆下去吗?答: _________ .(填“能”或“不能”)
(2)设AA1=A1A2=A2A3=1.
①θ= _________ 度;
②若记小棒A2n1A2n的长度为an(n为正整数,如A1A2=a1,A3A4=a2,…)求出此时a2,a3的值,并直接写出an(用含n的式子表示).

活动二:
如图乙所示,从点A1开始,用等长的小棒依次向右摆放,其中A1A2为第1根小棒,且A1A2=AA1
数学思考:
(3)若已经摆放了3根小棒,θ1= _________ ,θ2= _________ ,θ3= _________ ;(用含θ的式子表示)
(4)若只能摆放4根小棒,求θ的范围.
(1)能 (2)①θ=22.5°   ②      (3)θ1=2θ,θ2=3θ,θ3=4θ
(4)18°≤θ<22.5°

试题分析:(1)能.
因为角的两条边为两条射线,没有长度,所以小棒可以无限摆放下去;
(2)①∵AA1=A1A2=A2A3=1,A1A2⊥A2A3
∴θ2=45°,
θ=22.5°.
故答案为22.5;
②∵AA1=A1A2=A2A3=1,A1A2⊥A2A3
∴A1A3=,AA3=
又∵A2A3⊥A3A4
∴A1A2∥A3A4
同理:A3A4∥A5A6
∴∠A=∠AA2A1=∠AA4A3=∠AA6A5
∴AA3=A3A4,AA5=A5A6
∴a2=A3A4=AA3=
a3=AA3+A3A5=a2+A3A5
∵A3A5=a2
∴a3=A5A6=AA5=

(3)∵A1A2=AA1
∴θ1=∠A2A1A3=2θ,
∴θ2=∠A2A4A3=θ+2θ=3θ,
∴θ3=∠A2A4A3+θ=4θ,
故答案为θ1=2θ,θ2=3θ,θ3=4θ;
(4)由题意得:

∴18°≤θ<22.5°.
点评:本题主要考查相似三角形的判定和性质、勾股定理、解一元一次不等式、等腰直角三角形的性质等知识点,解题的关键在于找到等量关系,求相关角的度数等.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,四边形OABE中,∠AOE=∠BEO=90°,OA=3, OE==4,BE=1,点C,D是边OE(与端点O、E不重合)上的两个动点且CD=1.

(1)求边AB的长;
(2)当△AOD与△BCE相似时,求OD的长.
(3)连结AC与BD相交于点P,设OD=x,△PDC的面积记为y,求y关于x的函数关系式,并写出x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

两个全等的直角三角形重叠放在直线l上,如图(1),AB=6cm,BC=8cm,∠ABC=90°,将Rt△ABC在直线l上左右平移,如图(2)所示.
(1)求证:四边形ACFD是平行四边形;
(2)怎样移动Rt△ABC,使得四边形ACFD为菱形;
(3)将Rt△ABC向左平移4cm,求四边形DHCF的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,四边形ABCD是正方形,BD是对角线,BE平分∠DBC交DC于E点,交DF于M,F是BC延长线上一点,且CE=CF.
(1)求证:BM⊥DF;
(2)若正方形ABCD的边长为2,求ME•MB.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,△ABC中,点D、E分别是AB、AC的中点,则下列结论:①BC=2DE;②△ADE∽△ABC;③.④三角形ADE与梯形DECB的面积比为1:4,其中正确的有【    】

(A)3个          (B)2个       (C)1个          (D)0个

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图, 在Rt△ABC中,∠C=90º, AC=9,BC=12,动点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ. 点P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).

(1)直接用含t的代数式分别表示:QB=__________, PD=___________;
(2)是否存在t的值,使四边形PDBQ为平行四边形?若存在,求出t的值;若不存在,说明理由;
(3)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻成为菱形,求点Q的速度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知△ABC中,∠C=90°,AC=BC,AB=6,O是BC边上的中点,N是AB边上的点(不与端点重合),M是OB边上的点,且MN∥AO,延长CA与直线MN相交于点D,G点是AB延长线上的点,且BG=AN,连接MG,设AN=x,BM=y.
(1)求y关于x的函数关系式及其定义域;
(2)连接CN,当以DN为半径的⊙D和以MG为半径的⊙M外切时,求∠ACN的正切值;
(3)当△ADN与△MBG相似时,求AN的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知如图,在矩形ABCD中,AB=12cm,BC=6cm,点E自A点出发,以每秒1cm的速度向D点前进,同时点F从D点以每秒2cm的速度向C点前进,若移动的时间为t,且0≤t≤6.
(1)当t为多少时,DE=2DF;
(2)四边形DEBF的面积是否为定值?若是定值,请求出定值;若不是定值,请说明理由.
(3)以点D、E、F为顶点的三角形能否与△BCD相似?若能,请求出所有可能的t的值;若不能,请说明理由.
 

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,把△PQR沿着PQ的方向平移到△P′Q′R′的位置,它们重叠部分的面积是△PQR面积的一半,若PQ=,则此三角形移动的距离PP′=       

查看答案和解析>>

同步练习册答案