精英家教网 > 初中数学 > 题目详情
在三边互不相等的三角形中,最长边的长为a,最长的中线的长为m,最长的高线的长为h,则(  )
分析:在三边互不相等的三角形中,根据勾股定理,最长的边是最长的,最长的中线比最高的高长.
解答:解:在△ABC中,AC为最长的边,AE为最长的中线,AD为最长的高,则AC2=AD2+DC2;AE2=AD2+DE2;因为DC大于DE,所以AC>AE>AD,所以在三边各不相等的三角形中最长的边大于最长的中线大于最长的高.

此题答案a>m>h.
故选A.
点评:考查在三角形中勾股定理的运用,根据题意画出三角形,高为顶点到对应边的最短线线段,而且中线在三角形内,所以最长的为边,最短的为高.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•南昌)某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:
(1)操作发现:在等腰△ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连接MD和ME,则下列结论正确的是
①②③④
①②③④
(填序号即可)
①AF=AG=
12
AB;②MD=ME;③整个图形是轴对称图形;④MD⊥ME.
(2)数学思考:在任意△ABC中,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图2所示,M是BC的中点,连接MD和ME,则MD和ME具有怎样的数量关系?请给出证明过程;
(3)类比探究:
(i)在任意△ABC中,仍分别以AB和AC为斜边,向△ABC的内侧作等腰直角三角形,如图3所示,M是BC的中点,连接MD和ME,试判断△MED的形状.答:
等腰直角三角形
等腰直角三角形

(ii)在三边互不相等的△ABC中(见备用图),仍分别以AB和AC为斜边,向△ABC的内侧作(非等腰)直角三角形ABD和(非等腰)直角三角形ACE,M是BC的中点,连接MD和ME,要使(2)中的结论此时仍然成立,你认为需增加一个什么样的条件?(限用题中字母表示)并说明理由.

查看答案和解析>>

科目:初中数学 来源:2013年江西省南昌市高级中等学校招生考试数学 题型:044

某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:

(1)操作发现:

在等腰△ABC,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连接MD和ME,则下列结论正确的是________(填序号即可)

①AF=AG=AB;②MD=ME;③整个图形是轴对称图形;④MD⊥ME

(2)数学思考:

在任意△ABC中,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图2所示,M是BC的中点,连接MD和ME,则MD与ME具有怎样的数量关系?请给出证明过程;

(3)类比探究:

(i)在任意△ABC中,仍分别以AB和AC为斜边,向△ABC的内侧作等腰直角三角形,如图3所示,M是BC的中点,连接MD和ME,试判断△MEC的形状.答:________

(ii)在三边互不相等的△ABC中,仍分别以AB和AC为斜边,向△ABC的内侧作(非等腰)直角三角形ABD和(非等腰)直角三角形ACE,M是BC的中点,连接MD和ME,要使(2)中的结论时仍然成立,你认为需增加一个什么样的条件?(限制用题中字母表示)并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

在三边互不相等的三角形中,最长边的长为a,最长的中线的长为m,最长的高线的长为h,则


  1. A.
    a>m>h
  2. B.
    a>h>m
  3. C.
    m>a>h
  4. D.
    h>m>a

查看答案和解析>>

科目:初中数学 来源:2013年江西省南昌市中考数学试卷(解析版) 题型:解答题

某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:
(1)操作发现:在等腰△ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连接MD和ME,则下列结论正确的是______(填序号即可)
①AF=AG=AB;②MD=ME;③整个图形是轴对称图形;④MD⊥ME.
(2)数学思考:在任意△ABC中,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图2所示,M是BC的中点,连接MD和ME,则MD和ME具有怎样的数量关系?请给出证明过程;
(3)类比探究:
(i)在任意△ABC中,仍分别以AB和AC为斜边,向△ABC的内侧作等腰直角三角形,如图3所示,M是BC的中点,连接MD和ME,试判断△MED的形状.答:______.
(ii)在三边互不相等的△ABC中(见备用图),仍分别以AB和AC为斜边,向△ABC的内侧作(非等腰)直角三角形ABD和(非等腰)直角三角形ACE,M是BC的中点,连接MD和ME,要使(2)中的结论此时仍然成立,你认为需增加一个什么样的条件?(限用题中字母表示)并说明理由.

查看答案和解析>>

同步练习册答案